😊😊😊欢迎来到本博客😊😊😊
本次博客内容将继续讲解关于深度学习图像识别的相关知识
🎉作者简介:⭐️⭐️⭐️目前地学博士生在读。
📝目前更新:🌟🌟🌟目前已经更新了关于网络爬虫的相关知识、机器学习的相关知识、目前正在更新深度学习的相关内容。
💛💛💛本文摘要💛💛💛
本文我们将介绍图像傅里叶变换和小波变换之间的基础概念及实际应用。
🌟傅里叶变换基础原理
傅里叶变换(Fourier Transform)是一种数学工具,在信号处理、物理学、工程学等众多领域都有广泛应用。它能够将一个信号从时域(或空域)转换到频域,从而揭示信号在不同频率下的成分分布。
傅里叶变换的基本原理基于傅里叶级数。傅里叶级数表明,任何周期信号都可以表示为一系列正弦和余弦函数的线性组合。而傅里叶变换则将这个概念扩展到非周期信号,它把非周期信号看作是周期为无穷大的周期信号。通过傅里叶变换,我们可以将一个复杂的信号分解为不同频率的正弦和余弦分量的叠加,每个分量都有自己的幅度和相位。
这里是从时域空间经过傅里叶变换转换为频域信号的过程。可以看到在时域空间中杂乱无章的信号经过转换可以得到大概四种频率信号。
这里的上方公式表