概率密度生成例子scipy.stats.gaussian_kde用法

本文介绍了如何利用scipy.stats.gaussian_kde进行概率密度估计,通过实例展示了该函数的具体用法,帮助理解如何在Python中生成概率密度图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率密度生成例子scipy.stats.gaussian_kde用法


源如下:

#-*-coding:utf-8-*-
#pyhon3.6运行
#time:
#version
#lwz
from scipy import stats
import numpy as np
def measure(n):
     "Measurement model, return two coupled measurements."
     m1 = np.random.normal(size=n)
     m2 = np.random.normal(scale=0.5, size=n)
     return m1+m2, m1-m2
m1, m2 = measure(2000)
xmin = m1.min()
xmax = m1.max()
ymin = m2.min()
ymax = m2.max()

X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
           extent=[xmin, xmax, ymin, ymax])
ax.plot(m1, m2, 'k.', markersize=2)
ax.set_xlim([xmin, xmax])
ax.set_ylim([ymin, ymax])
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值