Knowledge Distillation with Conditional Adversarial Networks论文初读

本文探讨了使用条件对抗网络(CAN)进行知识蒸馏,特别是对于小型学生网络。实验表明,这种方法在保留类别关系和多样性方面优于传统的教师-学生网络,并在各种网络规模下提供性能与效率的平衡建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

摘要

引言

相关工作

  网络加速

  知识蒸馏

  GAN

知识蒸馏的损失函数

  残差结构

  知识蒸馏

  用对抗网络学习知识

实验

  实验设置

  GAN学习的优势

  GAN方法的分析

  分布可视化

结论


摘要

提出了使用CAN(conditional adversarial networks)来搭建teacher-student架构

提出的方法对相对较小的student网络特别有效

实验展示了当前流行的网络作为student时,网络大小对结果的影响

实验研究了分类准确率和效率的权衡,给出了如何挑选student网络的建议

引言

  • 工作

采用CAN将dark knowledge从teacher网络中迁移到student网络中

实验表明通过对抗训练学到的损失要比teacher-student网络中的预定损失更有优势,这种优势在student网络非常小的时候格外明显

  • 动机

由于student网络结构一般小于teacher网络,所以强制让student网络蒸馏众多soft targets中的一种(多个teacher网络的平均或者集成)不仅时没有必要的,而且时非常苦难的

通过引入判别器,student网络可以从teacher网络中自动地学到好的损失来保留类之间的关系,并且保持多态性,如下图所示

相关工作

  网络加速

低精度保存:有的甚至用1-bit来保存权重,但这知识概念上的,因为很多GPU不支持这些bit的操作

裁剪和分解权重:假设权重时稀疏的,并且都有两个阶段,一个后处理一个fine-tune,并且裁剪只是减少了基础操作数量,而没有减少推理时间

  知识蒸馏

KD

有一些研究将中间层的信息作为监督信息的

作者的方法时对这些方法的补充,用CAN代替了手动设计损失的过程

  GAN

图像到图像的任务

知识蒸馏的损失函数

  残差结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值