继续深度学习技术的探讨,填坑不断,头秃不断~~~~~
目录
3.5. 自编码器(AE)
3.5.1. 定义
自编码器(Autoencoder, AE)是一种数据的压缩算法,其中压缩和解压缩函数是数据相关的、有损的、从样本中自动学习的。
它通常用于学习数据的高效编码,在神经网络的形式下,自编码器可以用于降维和特征学习。
在游戏AI中,自编码器可以被用于数据的压缩、特征提取或异常检测等任务。
3.5.2. 形成过程
自编码器起源于神经网络和深度学习的发展。
它是一种特殊的神经网络结构,由两部分组成:
- 编码器:编码器负责将输入数据压缩成一个较低维度的表示
- 解码器:解码器则负责从这个低维表示中恢复原始数据。
在训练过程中,自编码器的目标是让输出尽可能接近输入,从而学习到输入数据的有效表示。
3.5.3. 运行原理
3.5.3.1.运行原理及基本框架
- 编码器:接收原始输入数据,并通过一系列神经网络层将其压缩成一个较低维度的隐藏表示(也称为编码)。这个过程通常涉及线性变换和非线性激活函数的应用。
- 解码器:接收编码器的输出(即隐藏表示),并通过另一系列神经网络层尝试重构原始输入数据。解码器的目标是尽可能准确地还原原始输入。
- 训练:通过反向传播算法和优化方法(如梯度下降)来训练自编码器。训练过程中,模型会尝试最小化输入数据和重构数据之间的差异,通常使用均方误差(MSE)等损失函数来衡量这种差异。
在游戏AI中,自编码器(AE)算法并没有特定的数学公式,因为它是一个神经网络结构,由编码器和解码器两部分组成,通过训练来优化模型的参数。然而,我们可以描述其关键组成部分和前向传播的过程。
编码器
编码器部分通常是一个或多个神经网络层,它将输入数据 (x) 映射到一个隐藏表示 (h)。这个过程可以用以下方式表示(尽管这不是一个具体的数学公式):
其中, 是编码器的神经网络函数,
是编码器的参数(如权重和偏置),
是输入数据,
是得到的隐藏表示。
解码器
解码器部分也是一个或多个神经网络层,它将隐藏表示 (h) 映射回与原始输入数据维度相同的重构数据 (r)。这个过程可以表示为:
其中,是解码器的神经网络函数,
是解码器的参数,
是编码器的输出(即隐藏表示),
是重构的数据。
自编码器的训练
自编码器的训练目标是最小化输入数据 和重构数据
之间的差异。这通常通过优化一个损失函数(如均方误差MSE)来实现:
其中,是输入数据的维度,
和