灰度梯度共生矩阵C++实现

本文介绍了灰度梯度共生矩阵的计算过程,包括灰度图像和梯度图像的归一化,以及如何统计共生矩阵的元素。通过公式和代码示例展示了C++与OpenCV库的应用,用于纹理分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

灰度-梯度共生矩阵的元素H(i,j)定义为在归一化的灰度图像F(m,n)和归一化的梯度图像G(m,n)中共同具有灰度为i和梯度为j的像素点数。例如H(10,5)=45,表示图像内像素点灰度为10,梯度为5的像素点个数是45。

1.灰度归一化

F(K,L)=INT(f(K,L)\times N_{H} /f_{M} )+1

其中N_{H}是归一化后的最大灰度级,取16;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值