剑指 Offer 39. 数组中出现次数超过一半的数字

博客围绕剑指Offer 39题,要找出数组中出现次数超过一半的数字。假设数组非空且总有多数元素,给出示例。介绍了哈希方法,需掌握相关方法使用,还提到可对数组排序,排序后中间位置数字即为所求,涉及Arrays类使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剑指 Offer 39. 数组中出现次数超过一半的数字

数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。

 

你可以假设数组是非空的,并且给定的数组总是存在多数元素。

 

示例 1:

输入: [1, 2, 3, 2, 2, 2, 5, 4, 2]
输出: 2
 

限制:

1 <= 数组长度 <= 50000

哈希方法

应掌握 getOrDefault() containKey()等方法的使用

class Solution {
    public int majorityElement(int[] nums) {
        HashMap<Integer,Integer> hash=new HashMap<Integer,Integer>();
        for(int i=0;i<nums.length;i++) {
           
            hash.put(nums[i],hash.getOrDefault(nums[i],0)+1);
            if(hash.get(nums[i])>nums.length/2)//超过一般时,返回
            return nums[i];
        }
       
     return 0;
    }
   
}

使用排序
因为数组中必然存在一个数字的个数超过数组长度的一半,这样,我们可以先对该数组进行排序,排序之后数组中间位置的数字必然是超出数组一半的数字。
代码为:

 public int majorityElement(int[] nums) {
    Arrays.sort(nums);
    return nums[nums.length >> 1];
}

Arrays类使用

 

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值