pytorch目标检测篇:0.目标检测前言

本文概述了目标检测的发展历程,重点介绍了2014年前后的传统方法与深度学习时代的双级检测(如RCNN)和单级检测(如YOLO)。讲解了目标检测中的关键指标,并提供了学习资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

第一阶段的图像分类篇基本结束了,接下来开始目标检测篇。

参考内容来自:


学习资料

  1. 目标检测前言
  2. 极市平台——综述:目标检测二十年

1. 目标检测算法分类

如下图所示,以2014年为分水岭,目标检测在过去的二十年中可大致分为两个时期:

  • 2014年之前——传统目标检测
  • 2014年之后——基于深度学习的目标检测

在这里插入图片描述
在深度学习时代,目标检测可以分为两类:

  • 双级检测(two-stage detection),将检测框定义为一个“从粗到细 ”的过程,如 RCNN、Fast RCNN、Faster RCNN等
  • 单级检测(one-stage detection),将检测框定义为“一步到位”的过程,如YOLO、SSD等

在这里插入图片描述


2. 目标检测中的常见指标

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值