语义分割中常用的两种损失函数

cross-entropy 交叉熵

信息量

信息量个人理解是指验证信息发生所需要的信息多少,所以一个事件发生的概率越大,它的信息量越小。例如以下事件:

  • A : 明早太阳东边升起

  • B : 明早太阳西边升起

    我们可以知道事件B直观上给我们的信息量很爆炸,我们验证B发生需要的知识,条件比较多。对于一个小概率事件,它的发生往往给人带来爆炸的信息,我们称它的信息量大。记作:
    在这里插入图片描述

熵的概念

熵是指信息量的期望,它反映的是信息量的平均取值大小。熵可以看作是按照真实分布p来衡量识别一个样本的所需要的编码长度的期望。记作:

相对熵(KL散度)

相对熵衡量的是两个分布的相似情况,为什么能衡量呢,因为它可以由极大似然估计推导出来的一个指标。例如有一个分布p(x),q(x),我们想要分析这两个分布的差异,我们可以采取下面这个公式:
在这里插入图片描述
其中当p分布和q分布越接近时,D趋近于0。
关于KL散度,我们如果拆开来看:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值