前言
本次实战是应用keras已经封装好的application模型DenseNet 来做分类,提供代码以供参考。代码除了需要更改路径和分类数(我的数据集是5类)外,应该不需要做其它改动可以直接运行。本文的代码基本都是拿别人的代码拼拼凑凑修修剪剪得到的,没什么原创性,所以不会上传github。(给自己的懒惰找了个正当的理由~)
参考:
训练和测试代码
keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完美案例(五)
保存模型和tensorboard可视化
keras系列︱Sequential与Model模型、keras基本结构功能(一)
denseNet源代码和各个模型的比较可参考github上keras-team的keras-applications项目:
Reference implementations of popular deep learning models
优化算法参数设置,添加层的设置等
论文:Densely Connected Convolutional Networks
一、准备工作
在进行具体的分类任务之前,我们先来检查一下工作环境!
1、已经安装好的keras是否有DenseNet这个模型?
打开终端(Windows系统下即cmd,Ubuntu可用快捷键Ctrl+Alt+T),启动python环境,输入下图的指令可以查看keras.applications的文档。从我红圈圈出来的部分可以看到densenet这个包是存在的。如果不存在请更新keras版本。
2、打印DenseNet模型,对模型架构有个大概的认知。
获取模型信息的代码如下:
#--c