【keras实战】用DenseNet实现五种花的分类

 

前言

        本次实战是应用keras已经封装好的application模型DenseNet 来做分类,提供代码以供参考。代码除了需要更改路径和分类数(我的数据集是5类)外,应该不需要做其它改动可以直接运行。本文的代码基本都是拿别人的代码拼拼凑凑修修剪剪得到的,没什么原创性,所以不会上传github。(给自己的懒惰找了个正当的理由~)

参考

           训练和测试代码   

            keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完美案例(五)

            保存模型和tensorboard可视化

            keras系列︱Sequential与Model模型、keras基本结构功能(一)

            denseNet源代码和各个模型的比较可参考github上keras-team的keras-applications项目:

            Reference implementations of popular deep learning models

            优化算法参数设置,添加层的设置等

            论文:Densely Connected Convolutional Networks     

一、准备工作

       在进行具体的分类任务之前,我们先来检查一下工作环境

      1、已经安装好的keras是否有DenseNet这个模型?

       打开终端(Windows系统下即cmd,Ubuntu可用快捷键Ctrl+Alt+T),启动python环境,输入下图的指令可以查看keras.applications的文档。从我红圈圈出来的部分可以看到densenet这个包是存在的。如果不存在请更新keras版本

          2、打印DenseNet模型,对模型架构有个大概的认知。

                获取模型信息的代码如下:

#--c
评论 76
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值