ICDE2020|Predictive Task Assignment in Spatial Crowdsourcing: A Data-driven Approach

本文提出了DPSTA框架,一种基于数据驱动的预测性空间任务分配方法,利用工人的历史轨迹和任务发布信息预测未来时空分布。框架包含工人和任务的预测,以及任务分配策略。通过预测工人可用时间、起始位置和行进路线,结合任务数量和位置预测,实现高效任务分配。实验结果表明,DPSTA在空间众包中表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Motivation

----------------------------------------------------------------------------------------------------

  1. 过去的工作集中于讨论空间众包的静态离线场景,但是空间众包是一个实时平台,工人和任务可以动态在线,并且其位置事先未知;
  2. 最近的一些工作探索了SC中的在线分配方法,其中根据当前任务分配,将新到达的任务分配给合适的工人,并未考虑未进入系统的未来工人/任务;
  3. 现有研究表明,大多数人都具有重复性的旅程,例如往返工作地点,这使得根据其旅行历史预测工人的位置/路线成为可能;此外通过分析任务执行轨迹,可以获得有关工人任务执行行为的宝贵见解,可以进一步利用这些见解来提高空间众包的质量;

Problem Statement

----------------------------------------------------------------------------------------------------

DPSTA Framework Overview 

----------------------------------------------------------------------------------------------------

作者提出一个新颖的空间众包框架DPSTA,包括两个组件:

  • 左边是预测组件,根据工人的历史任务执行轨迹和任务的发布历史,来预测未来的时空分布

针对工人和任务的预测提出了不同的策略,具体来看就是,通过将工人的历史任务执行记录视为序列数据,利用频繁模式挖掘的方法来挖掘工人的频繁时间实例。并每个工人在其可用时间内提出了两种空间分布预测策略:

1. 基于时空的循环神经网络(ST-RNN)的位置预测;

2. 基于混合模型的路线预测;

由于可以将空间任务视为空间点事件,因此作者设计了路径约束DeepWalk模型来获取每个时间点下未来任务的数量,然后采用核密度估计方法来预测未来时间实例中任务的位置分布。

  • 右边是任务分配组件

在工人时间和行进路线的限制下,将任务分配给合适的工人来最大化的任务分配数。首先为每个工人计算MaxVTS,因为在枚举MaxVTS的所有可能组合

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值