Motivation
----------------------------------------------------------------------------------------------------
- 过去的工作集中于讨论空间众包的静态离线场景,但是空间众包是一个实时平台,工人和任务可以动态在线,并且其位置事先未知;
- 最近的一些工作探索了SC中的在线分配方法,其中根据当前任务分配,将新到达的任务分配给合适的工人,并未考虑未进入系统的未来工人/任务;
- 现有研究表明,大多数人都具有重复性的旅程,例如往返工作地点,这使得根据其旅行历史预测工人的位置/路线成为可能;此外通过分析任务执行轨迹,可以获得有关工人任务执行行为的宝贵见解,可以进一步利用这些见解来提高空间众包的质量;
Problem Statement
----------------------------------------------------------------------------------------------------
DPSTA Framework Overview
----------------------------------------------------------------------------------------------------
作者提出一个新颖的空间众包框架DPSTA,包括两个组件:
- 左边是预测组件,根据工人的历史任务执行轨迹和任务的发布历史,来预测未来的时空分布
针对工人和任务的预测提出了不同的策略,具体来看就是,通过将工人的历史任务执行记录视为序列数据,利用频繁模式挖掘的方法来挖掘工人的频繁时间实例。并每个工人在其可用时间内提出了两种空间分布预测策略:
1. 基于时空的循环神经网络(ST-RNN)的位置预测;
2. 基于混合模型的路线预测;
由于可以将空间任务视为空间点事件,因此作者设计了路径约束DeepWalk模型来获取每个时间点下未来任务的数量,然后采用核密度估计方法来预测未来时间实例中任务的位置分布。
- 右边是任务分配组件
在工人时间和行进路线的限制下,将任务分配给合适的工人来最大化的任务分配数。首先为每个工人计算MaxVTS,因为在枚举MaxVTS的所有可能组合