C++利用OpenCV识别二维码QRCode

本文记录了使用C++进行二维码识别的过程,对比了zxing和OpenCV自带功能的优劣,并详细介绍了如何通过zxing库进行二维码识别,包括下载、编译、安装及编写识别函数的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引子

项目需要用到C++进行二维码识别,虽然手机上随便扫码就可以轻易识别出来,但是到了电脑上可就没有那么方便了。
我要做的是能够一下子把一张图片上的几十个二维码一下子识别出来,如果成功的话,那岂不是比用手机一张张扫码快许多啊。当然现在已经成功了,现在把配置过程记录一下。
我查阅了一大堆资料,识别二维码的方法有很多,基本上分为用zbar和zxing两种,但是对效果来看,zxing的识别更胜一筹,而且zbar已经停止更新了。那么,作为9012年的萌薪,当然是选择效果强大的zxing了啊。

方法一:zxing

  1. 原理
    简单来讲,它先找二维码的三个角点,如果找到才会进行解码。
  2. 首先
    我们需要一份包装包:zxing的安装库,这是C++版本的,将它下载到你的电脑上
  3. 编译安装
    下载好的zxing库建立一个build的文件夹,编译,安装,命令行如下。
mkdir build
cd build
cmake ..
make
make install

这样就ok了。需要注意的是,CMakeLists.txt里面有OpenCV的依赖选项,所以最好提前配置好OpenCV。
4. 安装完成
如果你成功编译了,那么在build文件夹里面会有一个叫做libzxing.a文件,这就是你编译好的静态链接库,后面你想调用zxing的话就得把这个文件导进去。
5. 识别二维码
这里我编写了一个简单的函数,思想是,先用OpenCV imread函数读取图片,然后将其装换为灰度图,然后调用zxing的解码函数得到识别结果进行输出。
首先准备好CmakeLists.txt这个很基本,但很重要。

cmake_minimum_required (VERSION 3.1)
# Enable C++11
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
# 调试模式
set(CMAKE_BUILD_TYPE "Debug")
project (newPipeLocation)
#这是我自己的OpenCV安装路径
set(OpenCV_DIR /usr/local)
# zxing
set(ZXing_DIR /usr/local)
find_package(OpenCV 4 REQUIRED)

include_directories(
    ${
   
   OpenCV_DIR}/include
    ${
   
   ZXing_DIR}/include/zxing
    /home/wwh/Downloads/zxing-cpp/core/src
    /home/wwh/Downloads/zxing-cpp/opencv/src
    )
add_executable(main main.cpp)
# 这里的libzxing.a很重要
target_link_libraries(main 
    ${
   
   OpenCV_LIBS}
 
### 如何使用 OpenCVC++ 实现二维码识别 要实现基于 OpenCV二维码识别功能,可以按照以下方法完成。以下是详细的说明以及代码示例。 #### 图像预处理 在实际应用中,通常需要先对输入图像进行边缘检测或其他形态学操作来增强特征提取的效果。这一步可以通过 `cv::Canny` 或者其他二值化技术完成[^1]。 ```cpp #include <opencv2/opencv.hpp> #include <vector> int main() { cv::Mat img = cv::imread("qrcode.png", cv::IMREAD_GRAYSCALE); if (img.empty()) { std::cerr << "Image not found or unable to load!" << std::endl; return -1; } cv::Mat edges; cv::Canny(img, edges, 50, 150); // 使用 Canny 边缘检测算法 cv::imshow("Edges", edges); cv::waitKey(0); return 0; } ``` 上述代码展示了如何加载灰度图片并对其进行边缘检测。这是后续轮廓分析的基础步骤之一。 --- #### 轮廓查找与层次结构解析 通过调用函数 `cv::findContours` 可以获取到所有的轮廓及其对应的层级关系。对于二维码而言,其几何特性决定了它具有较为明显的嵌套结构(即内部方框被外部更大的矩形包围),因此可以根据这一特点筛选可能的目标区域。 ```cpp std::vector<std::vector<cv::Point>> contours; std::vector<cv::Vec4i> hierarchy; // 查找所有轮廓 cv::findContours(edges.clone(), contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE); std::vector<int> candidates; // 存储符合条件的候选索引 for (size_t idx = 0; idx < hierarchy.size(); ++idx) { int level = 0; int currentIdx = idx; while (hierarchy[currentIdx][2] != -1 && level < 5) { // 判断是否有至少五层嵌套 currentIdx = hierarchy[currentIdx][2]; ++level; } if (level >= 5) { candidates.push_back(idx); } } if (!candidates.empty()) { for (auto candidate : candidates) { cv::drawContours(img, contours, candidate, cv::Scalar(0, 255, 0), 2); } } else { std::cout << "No potential QR Code detected." << std::endl; } cv::imshow("Detected Contours", img); cv::waitKey(0); return 0; ``` 此部分实现了对轮廓数据的进一步过滤逻辑,并标注出满足条件的部分作为潜在二维码位置。 --- #### 解码过程 虽然 OpenCV 提供了一些基础工具帮助定位条形码或者二维编码的位置,但是具体的解码工作往往还需要借助第三方库比如 ZBar、ZXing 等来进行最终的数据读取。下面是一个简单的伪代码框架用于展示整个流程: ```cpp #include <zbar.h> // 假设已经安装 zbar 库 void decodeQR(const cv::Mat& inputImg) { zbar::ImageScanner scanner; scanner.set_config(zbar::ZBAR_QRCODE, zbar::ZBAR_CFG_ENABLE, 1); cv::Mat grayImg; cvtColor(inputImg, grayImg, cv::COLOR_BGR2GRAY); zbar::Image image(grayImg.cols, grayImg.rows, "Y800", reinterpret_cast<char*>(grayImg.data), grayImg.total()); scanner.scan(image); for (zbar::Image::SymbolIterator symbol = image.symbol_begin(); symbol != image.symbol_end(); ++symbol) { std::cout << "Decoded data: " << symbol->get_data() << std::endl; } } ``` 注意这里引入了额外依赖项——ZBar SDK 来辅助完成最后阶段的任务。 --- ### 总结 综上所述,在 C++利用 OpenCV 进行基本的二维码探测主要包括以下几个方面的工作:首先是做好必要的前期准备工作;其次是运用合适的算法找出感兴趣的对象范围;最后再结合专门设计好的软件包执行真正的信息提取动作。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值