FAST-LIO2 (ikd-tree) 和 faster-lio (ivox) 代码详解

本文详细解析了港大FAST-LIO2和高博团队的faster-lio两种领先的激光惯导里程计(LIO)算法,重点介绍了它们在增量式点云组织上的创新,对于全生命周期SLAM有重大意义。作者提供了对这两套系统代码的中文注释,旨在帮助读者理解和学习先进技术,同时分享了代码链接以供参考和讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

FAST-LIO2 / ikd-tree 和 faster-lio / ivox 代码详解

本文目的

港大的FAST-LIO2和高博团队提出的faster-lio可以说是目前最先进的LIO算法了。他们最突出且最重要的工作应该是提出了两种增量式的点云组织算法。增量式更新是SLAM研究里非常核心的话题,前面两种算法非常巧妙地利用了SLAM的点云地图是增量更新这一特点,大幅提升了系统的计算效率。这两个系统为解决Life-Long SLAM-全生命周期SLAM指出了一条明确的道路,笔者认为这属于是SLAM研究的一种质变了。相信很多朋友也和笔者怀着相同的想法就是:虽然这些先进的系统我写不出来,但是我学会它、理解它,也算是一种成就吧。但是现实是残酷的,大牛们怎么做到算法设计得神奇,连代码也写得出神入化的。我连看代码都看得这么吃力(呜呜呜~)。所以,笔者靠着顽强的意志力,以及基于自己的理解,给两个系统的代码做了较为详细的中文注释,方便日后复习浏览。下面挂一下GITHUB的链接:

FAST-LIO2

https://github.com/GDUT-Kyle/FAST_LIO_SLAM

faster-lio

https://github.com/GDUT-Kyle/faster-lio_noted

注释部分难免有误,欢迎大家批评指正。如果对大家的学习有帮助的话,希望大家可以给我的github点个star支持一下(= ̄ω ̄=)。

### 关于Faster-LIO性能优化与实现方案 #### 一、现有架构分析 Faster-LIO是在FastLIO2基础上进行了进一步优化,主要通过将前端的增量KD树(ikd-tree)替换成增量体素网格(iVox),从而提高了处理速度效率[^1]。 #### 二、可能存在的瓶颈及改进建议 ##### 1. 数据预处理阶段加速 为了减少数据传输延迟并加快点云滤波过程,可以在传感器驱动层面对原始LiDAR数据进行初步过滤。这不仅减少了后续模块的数据量,还降低了CPU负载。对于特定应用场景下的噪声特征研究有助于设计更有效的去噪算法。 ##### 2. iVox结构优化 尽管iVox相比传统kd-tree具有更好的实时性表现,但仍存在一定的提升空间。例如,可以通过调整体素分辨率来平衡精度与运算复杂度;引入自适应机制使得不同区域采用不同的分辨率设置,既保证了关键部位的信息保留又提升了整体运行效率。 ```cpp // 动态调整体素大小示例代码 void adjust_voxel_size(const PointCloud& cloud, float& voxel_size){ // 计算当前帧点云密度分布情况... if (density > threshold_high) { voxel_size *= scale_down_factor; } else if (density < threshold_low) { voxel_size /= scale_up_factor; } } ``` ##### 3. 多线程/多GPU支持增强 充分利用现代硬件资源如多核处理器或多张图形卡来进行并行计算是提高系统吞吐率的有效手段之一。特别是针对大规模环境建模任务时,分布式存储加异步更新策略可以显著缩短构建时间。 ##### 4. 后端估计器改进 考虑使用更加鲁棒的状态估计算法代替现有的迭代扩展卡尔曼滤波(IEKF)。比如无迹变换(Unscented Transform)为基础的方法能够在保持良好跟踪效果的同时降低对初始条件敏感性的依赖程度。 #### 三、测试验证框架搭建 任何改动都需要经过严格的实验评估才能确认其有效性。因此建立一套完善的评测体系至关重要,它应该涵盖多种典型工况以及极限条件下系统的响应特性测量,并且要能够量化各项指标的变化趋势以便指导下一步的研发方向。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值