批量规范化(batch normalization)

批量规范化通过标准化输入,加快深层网络训练的收敛速度,提高模型精度。它应用于全连接层和卷积层的不同位置,并在训练和预测模式下有不同的计算方式。批量规范化不仅提供正则化效果,还有助于保持神经网络中间输出的稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

批量规范化可持续加速深层网络的收敛速度。可应用于单个可选层,也可应用于所有层。在每次训练迭代中,首先规范化输入,即通过减去均值并除以其标准差,两者均基于当前小批量处理。然后,应用比例系数和比例偏移。只有使用足够大的小批量,BN才有效且稳定。

y=\frac{x-E[x]}{\sqrt{Var[x]+\epsilon }}*\gamma +\beta

  • 对于全连接层,BN置于全连接层中的放射变换和激活函数之间
  • 对于卷积层,BN置于卷积层之后和非线性激活函数之前

batch normalization API参考文档icon-default.png?t=M0H8https://pytorch.org/docs/master/generated/torch.nn.BatchNorm1d.html#torch.nn.BatchNorm1d

使用批量规范化层的LeNet:

import torch
import torchvision
from torch import nn
from torchvision import transforms
from torch.utils.data import DataLoader,Dataset
from d2l import torch as d2l


#数据集
def load_data_fashion_mnist(batch_size,resize):
    trans = []
    if resize:
        trans.append(transforms.Resize(size=resize))
    trans.appen
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值