- 博客(11)
- 收藏
- 关注
转载 ModelCheckpoint()各参数含义及模型保存载入
from keras.callbacks import Callbackfrom keras.callbacks import ModelCheckpointKeras中使用ModelCheckpoint对训练完成的模型进行保存及载入Keras函数——keras.callbacks.ModelCheckpoint()各参数解释及模型的训练
2020-08-20 12:33:13
3422
转载 理解准确率,精准率,召回率,真正率,假正率,ROC/AUC
这里写目录标题1. ROC(接受者操作特征曲线)2.AUC曲线下面积(Area Under Curve)3.ROC/AUC 的 Python 实现P,R,F1值的介绍真正率(TPR) = 灵敏度 = TP/(TP+FN)假正率(FPR) = 1- 特异度 = FP/(FP+TN)下面是真正率和假正率的示意,我们发现 TPR 和 FPR 分别是基于实际表现 1 和 0 出发的,也就是说它们分别在实际的正样本和负样本中来观察相关概率问题。 **正因为如此,所以无论样本是否平衡,都不会被影响。**还是拿之
2020-08-20 09:35:27
1694
1
原创 偏差、方差/欠拟合、过拟合
一、评估假设函数——训练集、验证集、测试集为了检验算法是否过拟合,我们将数据分成训练集和测试集,通常用70%的数据作为训练集,用剩下30%的数据作为测试集。很重要的一点是训练集和测试集均要含有各种类型的数据,通常我们要对数据进行“洗牌”,然后再分成训练集和测试集。测试集评估在通过训练集让我们的模型学习得出其参数后,对测试集运用该模型,计算误差。用交叉验证集来帮助选择模型即:使用60%的数据作为训练集,使用 20%的数据作为交叉验证集,使用20%的数据作为测试集模型选择的方法为:a.使
2020-08-10 11:03:11
550
1
原创 CSDN顶端目录怎么设置
首先来看下普通的编写版式,没有顶端目录,只有文章每级目录。点击最右边的目录按钮,会出现顶端目录样式。但是目录并没有置顶方法来啦只要在开头写@TOC就会出现顶端目录,自动生成哦,()括号里还可以编辑目录标题...
2020-08-07 11:13:05
470
原创 线性回归&逻辑回归的区别于联系
线性回归线性回归算法。顾名思义具有线性特性。它能够预测序列数据,比如根据房屋面积和售价俩个特征在坐标轴上标点,试图找到一条拟合曲线,拟合数据,等到要预测房价时就可以根据曲线做出相应的预测。——连续值预测eg:这个例子是预测住房价格的,我们要使用一个数据集,数据集包含俄勒冈州波特兰市的住房价格。在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集。比方说,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱。那么,你可以做的一件事就是构建一个模型,也许是条直线,从这个数据模型上来看,也许
2020-08-03 10:07:24
458
1
原创 感知机与多层感知机&用与门(AND gate)、非门(NAND gate)、或门(OR)、异或门(XOR)
• 感知机是具有输入和输出的算法。给定一个输入后,将输出一个既定的值。• 感知机将权重和偏置设定为参数。• 使用感知机可以表示与门和或门等逻辑电路。• 异或门无法通过单层感知机来表示。• 使用2层感知机可以表示异或门。• 单层感知机只能表示线性空间,而多层感知机可以表示非线性空间。• 多层感知机(在理论上)可以表示计算机。1感知机x1、x2 是输入信号,y 是输出信号,w1、w2 是权重(w是weight 的首字母)。图中的○称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以
2020-07-27 22:13:42
3675
1
原创 NumPy 数组&Matrix矩阵
矩阵和数组的区别,这篇介绍较为详细补充一点:NumPy 数组(np.array)可以生成N维数组,即可以生成一维数组、二维数组、三维数组等任意维数的数组。数学上将一维数组称为向量,将二维数组称为矩阵。另外,可以将一般化之后的向量或矩阵等统称为张量(tensor)。一般将将二维数组称为“矩阵”,将三维数组及三维以上的数组称为“张量”或“多维数组”。...
2020-07-27 20:17:45
228
原创 K-Fold 交叉验证 (Cross-Validation)&StratifiedKFold
为什么需要交叉验证训练数据一般划分为训练集和测试集,训练集用于模型构建,训练模型,确定权重;测试集用于检测模型构建,只在模型检验时使用,用于评估测试集模型的准确率,检验模型的泛化能力;验证集也是用于模型构建,但不参与训练,它主要用于确定网络结构,调整模型的超参数。测试集是与训练独立的数据,完全不参与训练,用于最终模型的评估。在训练过程中,经常会出现过拟合的问题,就是模型可以很好的匹配训练数据,却不能很好在预测训练集外的数据。如果此时就使用测试数据来调整模型参数,就相当于在训练时已知部分测试数据的信
2020-07-26 17:10:59
3042
原创 sys.argv[ ]调试的俩种方法
sys.argv[]是用来获取命令行参数的,它是一个程序外部的参数组成的列表;并非代码本身的内容;sys.argv[0]表示代码本身文件路径,所以参数从1开始.列表的第一个元素,是程序本身,即第一个参数是程序文件的路径名称,之后才是外部传入的参数,可以有多个。arg[1]表示第一个命令行参数关于python中sys.argv[1]指令出错问题 classification_type = sys.argv[1]IndexError: list index out of range从终端输
2020-07-17 18:17:39
1025
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人