【大模型架构-Transformer、Mamba、Hyena】

个人学习自用,一些解释限于仅处理字母序列,有错误或不准确的地方欢迎指正

序列建模发展基本信息总结

模型架构提出年份引用量(截至25.5.3)核心机制变体模型时间复杂度长距离建模并行性输入变化后续传播适用场景
RNN/LSTM/GRU1980/1997/2014\递归结构\O(n)差/好/较好\\短序列建模/长序列建模/资源受限场景
Transformer NIPS会议2017.6 (谷歌)178283自注意力机制BERT / GPTO(n²) 超长序列受限优秀优秀token→嵌入(+位置编码)→Q/K/V全局注意力长序列建模,主流NLP任务
Mamba 仅预印本2023.12(卡内基梅隆大学)3113状态空间更新Vision MambaO(n)优秀优秀token→嵌入→动态状态更新参数状态更新多模态长序列建模
Hyena ICML会议2023.2(斯坦福大学)347长卷积+门控Striped HyenaO(N log L)优秀优秀token→嵌入→门控+卷积核生成卷积超长序列建模,生物序列等领域

在这里插入图片描述

计算步骤对比(输入为字母序列时)

步骤TransformerMambaHyena异同
1. 分词需要需要需要相同
2. 词嵌入token 映射为向量token 映射为向量token 映射为向量相同
3. 位置编码必须,否则序列无顺序感可选,SSM 隐顺序可选,卷积天然顺序感知不同
4. 投影
(X: 嵌入;W: 权重)
Q = X ⋅ W Q Q = X \cdot W_Q Q=XWQ
K = X ⋅ W K K = X \cdot W_K K=XWK
V = X ⋅ W V V = X \cdot W_V V=XWV
Q 查询向量,KV 键值对
状态空间输入向量:
u t = X ⋅ W p r o j u_t = X \cdot W_{proj} ut=XWproj
门控准备:
z t = σ ( X ⋅ W g a t e ) z_t = \sigma(X \cdot W_{gate}) zt=σ(XWgate)
卷积准备:
h t = X ⋅ W c o n v _ p r o j h_t = X \cdot W_{conv\_proj} ht=XWconv_proj
不同
5. 主干运算注意力得分:
scores = Q K T d \text{scores} = \frac{QK^T}{\sqrt{d}} scores=d QKT

注意力输出:
attn_out = softmax(scores) ⋅ V \text{attn\_out} = \text{softmax(scores)} \cdot V attn_out=softmax(scores)V

前馈映射:
FFN = MLP(attn_out) \text{FFN} = \text{MLP(attn\_out)} FFN=MLP(attn_out)
动态矩阵:
A ( x t ) , B ( x t ) , C ( x t ) , D ( x t ) A(x_t), B(x_t), C(x_t), D(x_t) A(xt),B(xt),C(xt),D(xt)

状态更新:
h t = A ( x t ) ⋅ h t − 1 + B ( x t ) ⋅ x t h_t = A(x_t) \cdot h_{t-1} + B(x_t) \cdot x_t ht=A(xt)ht1+B(xt)xt

输出:
y t = C ( x t ) ⋅ h t + D ( x t ) ⋅ x t y_t = C(x_t) \cdot h_t + D(x_t) \cdot x_t yt=C(xt)ht+D(xt)xt
长卷积计算:
conv_out = h t ∗ k ( τ ) \text{conv\_out} = h_t * k(\tau) conv_out=htk(τ)
K ( t ) K(t) K(t) 卷积核长度为 t t t
不同
6. 非线性激活前馈网络内使用
ReLU / GeLU
可选激活
SiLU 或其他
卷积后
ReLU / SiLU 激活
相似,位置不同
7. 残差连接Attention 和 FFN 输出加残差SSM 输出加残差卷积输出加残差相同
8. 层归一化每子层后 LayerNorm每 SSM/模块后 LayerNorm每模块块后 LayerNorm相同
9. 输出层线性变换 + Softmax 分类或回归线性映射 + 分类或回归卷积输出或后接 MLP不同

在这里插入图片描述

计算步骤解释(输入为字母序列时)

模型主干运算解释输入嵌入
Tokenization + Embedding
输入嵌入
位置编码
公式解释补充
对应下表 5.主干运算补充
Transformer
核心: 自注意力机制
1. 多头自注意力机制 (Multi-Head Self-Attention)
模型在不同表示的子空间中并行地关注不同位置。
2. 前馈神经网络 (Feed-Forward Neural Network, FFN)
对每个位置的表示进行非线性变换。
DNA Tokenize
k-mer、BPE、单碱基、可学习分词…

Embedding
将每个 token 转为向量(词嵌入矩阵)
Transformer 需添加位置编码,引入序列中 token 位置信息。QKV → softmax → FFN
计算 token 间相似度
聚合值向量
提取深层特征
Mamba
核心: 结构化状态空间模型
1. 卷积层 (Convolution):捕捉局部上下文信息。
2. 选择性状态空间模块 (Selective SSM)
动态地建模序列中的长期依赖关系。
同上Mamba、Hyena 内部机制保留顺序依赖,
因此不使用位置编码,或使用简单增量偏置。
状态更新 → 选择性机制
A(x):控制前一状态的更新比例
B(x):控制当前输入对状态的影响
C(x):控制状态对最终输出的影响
D(x):控制输入对最终输出的影响
Hyena
核心: 隐式长卷积
1. 门控机制 (Gating Mechanism):控制信息流动。
2. 长卷积 (Long Convolution):捕捉长距离依赖关系。
同上同上隐式卷积 → 门控
控制信息前后强化/弱化
准备卷积输入、执行长距离卷积(FFT 实现)

在这里插入图片描述

BERT参数量计算

BERT参数量 = embedding层参数 + 层数 * 各层的参数 + 输出层参数。
假设训练此BERT,就1条训练数据(ACTG)长度为4,共2层Transformer,隐藏层维度hidden_size=8

步骤模块参数形状参数量说明
嵌入层:40+32=72词嵌入矩阵(5, 8)40词表大小 5 (A/C/T/G/[MASK]),嵌入维度 8
位置编码(4, 8)32序列最大长度 4,可学习位置编码
投影层:64×4 = 256Q 线性映射(8, 8)64Query
K 线性映射(8, 8)64Key
V 线性映射(8, 8)64Value
注意力输出映射 ( W o u t p u t W_{output} Woutput)(8, 8)64
FFN 子层:280FFN 升维(8, 16)128第一层全连接
FFN 升维偏置(16,)16
FFN 降维(16, 8)128第二层全连接
FFN 降维偏置(8,)8
LayerNorm:32LayerNorm1:Attention 后γ: (8,), β: (8,)16γ 是缩放函数,β 是偏移参数
LayerNorm2:FFN 后γ: (8,), β: (8,)16每个特征维度单独缩放平移
输出层:40+5=45输出层权重(8, 5)40嵌入维度 → 词表大小
输出层偏置(5,)5
全部总参数:嵌入层 72 + 两层 Transformer 共 1136 + 输出层 45 = 1253

在这里插入图片描述

<think>好的,用户想了解如何复现Mamba架构。首先,我需要确认Mamba架构的具体内容,因为可能有多个同名模型。根据我的知识库,Mamba应该是指2023年底由Albert Gu和Tri Dao提出的状态空间模型(SSM)架构,它在处理长序列任务中表现出色,特别是在语言建模方面。接下来,我需要分解复现该架构的关键步骤,并确保技术细节的准确性。 第一步,理解Mamba的核心机制。用户可能需要知道Mamba与传统Transformer区别,特别是选择性状态空间模型(SSM)和硬件感知的并行扫描算法。这部分需要解释清楚SSM的基本原理,以及Mamba如何通过选择性机制动态调整参数,增强模型对上下文的相关性捕捉。 接下来,准备开发环境。需要列出所需的深度学习框架,比如PyTorch或JAX,以及可能需要的库,如cuDNN和线性代数优化库。安装步骤需要简明,但用户可能已经具备部分环境,所以提示他们检查现有配置。 然后是模型架构的实现。这部分需要详细说明各个组件的代码结构,比如选择性SSM层、残差块和前馈网络。特别是要强调如何将SSM集成到神经网络中,并处理并行扫描以优化GPU使用。可能需要解释张量操作和参数化的细节,确保代码正确性。 数据预处理和训练流程也是关键。用户可能需要指导如何准备适合长序列任务的数据集,比如PG19或ArXiv,并进行分词和批处理。训练时的超参数设置,如学习率调度和优化器选择,需要参考原论文的配置,同时提醒用户根据硬件调整批量大小。 性能优化部分需要讨论如何利用硬件特性,比如内核融合和内存优化,这对复现Mamba的高效性至关重要。可能需要建议使用NVIDIA的CUDA库或自定义内核来实现并行扫描,减少计算开销。 验证与测试步骤要确保模型输出符合预期,特别是在长序列任务上的表现。需要提及使用标准评估指标,如困惑度,并与Transformer基线进行比较,以验证复现的正确性。 最后,参考资料部分必须正确引用原论文和相关资源,方便用户深入查阅。同时,提醒用户复现过程中可能遇到的挑战,如并行扫描的实现细节和参数调整,建议参考开源实现或社区讨论。 在整理回答时,要确保结构清晰,逐步引导用户从理论理解到代码实现,再到训练和验证。技术细节要准确,特别是LaTeX公式的格式,如状态空间方程需要用$$...$$独立成段,变量用$...$行内表示。同时,使用中文口语化表达,避免过于学术化的措辞,让不同背景的用户都能理解。需要检查每一步的逻辑是否连贯,是否存在遗漏的关键点,比如是否提到选择性机制的具体实现方式,或者硬件优化的具体方法。确保所有建议都基于Mamba论文的描述,不添加主观猜测,保证信息的可靠性。</think>要复现Mamba架构(一种基于选择性状态空间模型的高效序列建模架构),可遵循以下结构化步骤: --- ### 一、理解Mamba的核心机制 Mamba的核心是**选择性状态空间模型(Selective SSM)**,其关键创新点包括: 1. **选择性机制**:参数(如$\Delta, A, B, C$)动态依赖于输入,而非固定,增强了上下文感知能力。 2. **硬件感知并行扫描**:通过并行化状态递推(如$h_{t}=A h_{t-1} + B x_t$)优化GPU计算效率。 3. **简化架构**:用SSM层替代Transformer中的注意力机制,降低长序列计算复杂度。 数学表示: $$ h_t = A(\Delta) \cdot h_{t-1} + B(\Delta) \cdot x_t $$ $$ y_t = C(\Delta) \cdot h_t $$ 其中$\Delta$由输入$x_t$通过线性投影生成。 --- ### 二、准备开发环境 1. **框架选择**:推荐PyTorch(官方实现)或JAX(高性能扩展)。 2. **依赖安装**: ```bash pip install torch torchvision numpy # 可选:安装CUDA加速库(如FlashAttention团队优化的SSM内核) ``` 3. **硬件要求**:建议至少1块支持CUDA的GPU(如NVIDIA A100)。 --- ### 三、实现模型架构 #### 1. 选择性SSM层(关键组件) ```python import torch from torch import nn class SelectiveSSM(nn.Module): def __init__(self, d_model, d_state=64): super().__init__() self.d_model = d_model self.d_state = d_state # 参数映射层(生成Δ, A, B, C) self.proj = nn.Linear(d_model, d_model * 5) # 初始化A(复数域对角化以稳定训练) self.A_log = nn.Parameter(torch.randn(d_model, d_state)) def forward(self, x): # 输入x: (batch, seq_len, d_model) delta, B, C, D, gamma = self.proj(x).split(...) # 分割动态参数 A = -torch.exp(self.A_log) # 确保A的实部为负以稳定状态 # 实现并行扫描(需自定义CUDA内核或简化实现) # 伪代码:通过并行累积计算状态h_t h = torch.zeros_like(...) outputs = [] for t in range(seq_len): h = A * h + B[:, t] * x[:, t] outputs.append(C[:, t] * h) y = torch.stack(outputs, dim=1) + D * x return y ``` #### 2. 残差块整合 ```python class MambaBlock(nn.Module): def __init__(self, d_model): super().__init__() self.ssm = SelectiveSSM(d_model) self.norm = nn.LayerNorm(d_model) def forward(self, x): return self.norm(x + self.ssm(x)) # 残差连接 ``` --- ### 四、数据预处理与训练 1. **数据集**:选择长序列任务(如PG19书籍文本、ArXiv论文)。 2. **分词与批处理**: - 使用SentencePiece或BPE分词,序列长度建议≥2048。 - 采用块状注意力掩码(如局部窗口限制)。 3. **超参数配置**(参考论文): - 优化器:AdamW(lr=3e-4,cosine衰减) - 批量大小:根据GPU显存调整(如32-128) - 训练步数:100k-300k --- ### 五、性能优化技巧 1. **内核融合**:将SSM的循环展开为并行矩阵操作。 2. **混合精度训练**:启用`torch.cuda.amp`减少显存占用。 3. **内存优化**:梯度检查点(Checkpointing)降低激活内存。 --- ### 六、验证与测试 1. **评估任务**: - 语言建模(困惑度,Perplexity) - 长上下文合成任务(如拷贝、检索) 2. **基线对比**:与Transformer-XL、Hyena等模型比较速度和准确率。 --- ### 七、参考资料 1. **论文**: [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752) 2. **开源实现**: [官方代码库](https://github.com/state-spaces/mamba) [JAX版实现](https://github.com/johnma2006/mamba-jax) --- 通过以上步骤可逐步实现Mamba架构。若需进一步优化,建议参考官方代码中的并行扫描算法和CUDA内核实现细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值