文献略读:Next Best View 相关

本文献略读聚焦于Next Best View(NBV)在3D探索和重建中的策略。首先介绍了一个基于RRT和NBV的探索规划器,通过增益函数考虑未知区域体积和路径长度。然后讨论了早期NBV概念在三维重建中的应用,包括两种不同的视点选择方法。最后,探讨了一种考虑定位误差的体积NBV规划,综合评估了观测区域、导航成本、扫描质量和遮挡因素。这些方法对于理解NBV在实际场景中的应用具有参考价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文献略读:Next Best View 相关

Receding Horizon “Next–Best–View” Planner for 3D Exploration

  • 基于RRT和NBV的探索规划器

  • 每一步都通过随机采样来构建RRT树,采样构型为 (x,y,z,ψ)(x,y,z,\psi)(x,y,z,ψ)

  • 采样完成后,寻找增益最大的构型作为NBV,并得到前往该构型的路径

  • 增益函数为Gain(n)=Gain(n−1)+Visible(M,ξk)exp(−λc(σk−1k))Gain(n) = Gain(n-1)+Visible(M,\xi_k)exp(-\lambda c(\sigma^k_{k-1}))Gain(n)=Gain(n1)+Visible(M,ξ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值