- 博客(27)
- 收藏
- 关注

原创 RK3588 16路实时视频流检测
16路摄像头帧率均控制在10FPS。为保证实时性,推理帧率支持每2帧推理一次,下述演示视频推理帧率为每5帧推理一次。DMA 数据缓冲区 + RKNN零拷贝API推理框架 + RKNN RGA数据处理,极大程度上优化CPU利用率,实测16路实时视频流,4个不同算法CPU利用率仅为260%左右(RK3588 8核CPU满负荷为800%),三个NPU利用率仅占60%左右(3个NPU满负荷为300%)。
2025-07-02 11:24:13
751
原创 RK3588 DMA, RGA, 零拷贝API使用指北
本文详细介绍了在RK3588平台上通过DMA、RGA和零拷贝API实现视频流处理优化的完整方案。主要内容包括:1)DMA缓冲区的创建方法,可减少CPU数据拷贝开销;2)利用RGA进行图像格式转换、resize和letterbox等预处理操作,替代OpenCV节省CPU资源;3)零拷贝API的配置和使用流程,包括内存申请、数据设置和推理执行;
2025-07-15 13:57:11
966
原创 Vscode 下载远程服务器失败解决方法
后续需要用到,当然也可以通过点击 vscode 上方工具条的 Help 下的 About 获得自己的 vscode 的 commit_id。,此外如果要远程服务器是 x86 架构的,需要替换下述命令的 arm64 为 x86。然后重新打开vscode 进行远程连接,就可以继续“愉快”的码字之旅了!将两个文件传输到 .vscode-server 目录下,并执行如下命令。,将下述命令贴到浏览器即可(以上是 arm 架构版本)为自己的 vscode 的。
2025-07-11 15:46:49
402
原创 RK3588 火焰烟雾检测
基于 YOLOV6,在RK3588上实现的明火烟雾检测模型 演示视频如下:RK3588_fire_smoke_detect 训练数据集20500张,其中真实数据集约15000张,合成烟雾数据集约5000张,数据集均来源于网上搜集,并进行部分重新标定。点击进入数据集参考网址1点击进入数据集参考网址2点击进入YOLOV6源码地址 ,预训练模型及代码版本号选择:0.3.0Note: 注意训练适配 rknn 的模型时,不要开启 --fuse_ab1.1.2 测试训练后的模型效果1.
2025-06-06 14:25:13
856
原创 重生之我和RV1126 RKMedia的恩怨情仇三——万法归宗篇
以下内容抽象于官方SDK,实际进行小型项目开发时,直接按照官方SDK进行调用即可,无需劳心费神进行抽象,抽象是为了进行大型项目开发时方便管理和复用。提供相应头文件的实现,并演示如何将各个管道串联,实现从VI 中获取数据,对得到的数据进行保存,并使用 VO 推流等一系列操纵。同时集成了UVC相关内容,支持将数据以UVC的格式传递给另一台设备处理。将代码完全粘贴一方面是记录,算备份之一,另一方面,给有这方便的朋友提供一个
2025-05-28 10:52:02
295
原创 SS928V100(Hi3403V100)----NNN推理引擎,AMCT-ONNX模型压缩量化踩坑记录(LINUX版)
上篇文章讲解了如何使用 ATC 工具将 ONNX / CAFFE 模型转换为能在 NNN 引擎和 SVP_NNN 引擎上推理用的 om 模型,其中 SVP_NNN 由于只支持 INT8 / INT16 类型,所以在模型转换时通过设置参数的方式直接可以完成浮点模型 ONNX / CAFFE 到 INT8 / INT16 om 模型的流程。但是如是要在 NNN 引擎上运行量化模型,就需要借助 AMCT 模型压缩量化工具了,本文以 AMCT-ONNX 进行讲解。
2025-05-22 10:19:25
1170
原创 SS928V100(Hi3403V100)----ATC模型转换工具----SVP_NNN 和 NNN 踩坑记录(LINUX版)
ATC 是海思芯片的模型转换工具,用于将开源框架网络模型(caffe,onnx,tensorflow)转化为 .om 格式并使用 AscendCL进行推理(因为笔者比较熟悉瑞芯微系列,分别类似于类似瑞芯微系列的RKNNToolkit工具, .rknn 模型,RKNNToolkitLite板端推理工具)。
2025-05-13 11:17:55
1262
3
原创 手搓ZLMediaKit实现拉流推流系列3(RK3588上YOLO系列拉流、MPP解码+编码、推流全流程)
前段时间比较忙,一直没有时间补充后续的内容。今天终于抽出空来,立马进入码字环节:手搓ZLMediaKit实现拉流推流系列在本篇也终于迎来了完结篇,在本篇文章中,你将看到以下一整套完整流程:使用ZLMediaKit拉流---MPP解码---Yolo模型进行推理---MPP编码并推流。
2025-05-08 10:46:27
768
原创 重生之我和RV1126 RKMedia的恩怨情仇二——不破不立篇
以下内容抽象于官方SDK,实际进行小型项目开发时,直接按照官方SDK进行调用即可,无需劳心费神进行抽象,抽象是为了进行大型项目开发时方便管理和复用。本文章提供抽象思路,如有不足,欢迎各位大佬指正。
2025-05-08 09:36:30
782
原创 重生之我和RV1126 RKMedia的恩怨情仇一
猛然发现上一次发博客还是半年前,当时相关的内容是ZLMediakit的。最近这段时间接了一个相当紧急的项目,是关于RV1126上使用RKMedia调用MIPI摄像头进行算法处理相关的。由于之前没接触过RV1126,更没接触过MIPI摄像头和MIPI屏幕。当万能的OPENCV失效时,我真是差点吐出一口老血。为此狂加了好一段时间的班,趁着项目完结有时间了,记录一下我和RV1126的恩怨情仇!(PS: 吐槽一句,虽然咱是不专业的CV算法工程师,可这天天和各种各样的摄像头打交道是怎么个事啊!!
2025-04-29 10:27:02
868
原创 Yolov8 Detect 在 RK3588上的推理实现
Yolov8 相较于 Yolov5最大的区别就是不再有之前的 objectness 分支,只有解耦的分类和bbox回归分支,如下图所示。YOLOv5 输出特征图尺度为 80x80、40x40 和 20x20 的三个特征图,将三个不同尺度的类别预测分支、bbox 预测分支和 obj 预测分支(对象置信度预测分支)进行拼接,并进行维度变换。
2024-11-08 15:10:19
1202
原创 Python RK3588 MPP 8路视频硬解码!全体目光向我看齐!
本文重写了官方demo、加入了Zlmediakit进行拉流并通过pybind11将代码封装成so库,现在,在python中直接通过import的方式,就能完成基础的拉流解码操作,目前支持8路拉流解码!!!
2024-09-26 16:50:17
3337
8
原创 RK3588上RTSP实时视频流违规内容检测
(1)在RK3588上使用ZLMediakit拉取RTSP流进行MPP硬解码,然后通过yolo分类模型以及OCR文字识别模型检测视频中的违规内容。出现违规内容后,将图片帧保存到本地,并记录日志。 (2)同时RK3588还负责编码推流的部分,将拉取到的流通过MPP进行硬编码,然后以RK3588本身为推流服务器,进行视频推流。检测到违规内容时,中断推流。
2024-08-15 17:20:48
1594
原创 RKNN C++ 实现YOLOV5 分类模型(简单点,码字的方式简单点~)
最近在做项目,用到了YOLOV5的分类模型,项目需求是将模型使用RKNN C++ API 接口实现。因为之前用C++实现过检测模型,刚开始便想当然的以为和YOLO的检测模型大差不差,甚至会更简单,就是因为这种心理踩了很多坑才实现项目需求。唉,怎么就没有人早点告诉我走弯路了呢?简单讲一下分类模型和检测模型的区别:(1)前处理方式不同,检测模型则是通过LetterBox的方式处理数据,而分类模型的前处理采用的是CenterCrop的方式。(2)归一化不同,检测模型归一化过程中均值是0,方差是255。
2024-07-18 09:59:34
1109
1
原创 手搓ZLMediakit实现推流拉流系列扩展(RKNN C++推理流程)
在使用 ZLMediaKit 并结合RK MPP解码模块后,相对得到的视频帧进行深度学习模型推理(本文以YOLO系列为主介绍),在推理之前,有必要先了解一下RKNN使用C++推理的流程。此外,为了方便之后项目的扩展,建议将RKNN推理库封装成一个类(仅供参考)。
2024-06-18 22:40:59
2104
2
原创 手搓ZLMediakit实现推流拉流系列2(Rockchip MPP编解码)
本文是在手搓ZLMediaKit实现拉流推流系列1(C++版)基础上调用了瑞芯微(Rockchip 系列)的MPP硬件编解码库,将经过ZLMediakit拉流得到的视频帧数据使用MPP解码库函数进行硬解码得到YUV数据格式后,再通过MPP编码库函数对视频帧数据进行编码后使用ZLMediakit推流给RTMP服务器。
2024-06-18 15:42:46
2752
3
原创 手搓ZLMediaKit实现拉流推流系列1(C++版)
ZLMediakit 作为一款强大且开源的流媒体服务框架,个人认为已经非常的成熟且使用。本篇文章作为手搓ZLMediaKit系列的入门版,旨在帮助和自己一样的小白玩家熟悉Zlmediakit从RTSP进行拉流并推流到RTMP服务器的一个过程。
2024-06-07 10:42:57
3532
4
原创 Ubuntu 编译pymnn遇到的问题及解决方案
定位到"_mnncengine.cpython-37m-aarch64-linux-gnu.so"的位置,比如我的是"/home/ubuntu/MNN-2.2.2/pymnn/pip_package/build/lib.linux-aarch64-3.7/_mnncengine.cpython-37m-aarch64-linux-gnu.so"本文仅记录本人在arm平台上安装pymnn时遇到的问题,仅供参考,并不涵盖编译过程中所有可能出现的问题。Arm上import MNN时,出现。
2023-08-11 14:49:27
488
1
原创 PNG、JPG如何转Dicom(dcm),那些年我踩过的坑(Python版)
Dicom作为医学影像的常见数据格式,是每个深耕于医疗AI的同学无法跳过的一个坑。虽然我只是一名扎根于算法部署方面的小白。但是也不可避免地接触到这类数据。这不,最近接到算法同学给出的算法,需要我自己找公开数据集进行测试。可是Dicom数据集并不常见(PS:测了1000张还嫌不够,大无语),因此只能将目光聚焦于PNG、JPG类型的数据集(直接用PNG、JPG训练的除外)。
2023-07-26 16:19:39
12285
8
原创 Ubuntu18.04 ONNXRuntime C++ API编译
最近在学习c++方面的部署应用,想着先拿熟悉的ONNX下手试试,却发现需要编译C++版本的ONNXRuntime。几经波折,在经历了一上午的编译后,终于成功了。写下这篇文章记录我的编译过程。
2023-07-12 15:02:23
1920
4
原创 Ubuntu使用apt update时出现:由于没有公钥,无法验证下列签名: NO_PUBKEY 42D5A192B819C5DA
在使用ubuntu进行下载或者编译时,经常会用到sudo apt update,奈何一直出现这个问题,导致无法进行下去,在网上找方法时,发现千篇一律都是让我去添加公钥。但是没有用!!!花里胡哨,不如直接干掉(删除),反正也没有影响。
2023-05-26 17:44:38
2295
6
原创 ONNX系列一:ONNX的使用,从转化到推理
onnx模型在算法岗位上属于接触到比较多的一款框架,随着接触到的框架越来越多,不免会产生一些遗忘。因此,写下这篇文章,记录下来学习onnx框架的一些心得体会。
2023-05-17 15:02:24
7500
8
原创 YOLOV5在MNN上的推理实现(Python版)
不得不吐槽一下,官方给的教程真的是混乱不堪,尤其是python版本的(当然也有可能是我技术不到家,看的比较费劲)。所以为了以后用到MNN框架进行推理时,不再去费力的看官方的文档,我从yolov5源码中抠出前后处理部分,并用MNN进行推理,具体代码如下。
2023-04-23 13:35:28
1854
2
原创 Ubuntu18.04上MNN编译与使用(Python版)
简单介绍一下:MNN(Mobile Neural Network)是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。欢迎使用MNN文档 — MNN-Doc 2.1.1 documentation。
2023-04-23 11:00:39
1953
3
原创 Yolov5在ONNXRuntime上的推理实现
这段时间部署Yolov5系列模型,想着先使用ONNXRuntime运行一下转换后的onnx模型,但是看着官方给出的detect.py,我陷入了沉思。我是真的不想抠代码!于是乎,秉承着程序猿的优良传统,我打开了百度。结果可想而知,不然你也不会看到我的文章了。草草看了一下,大部分是就给出一部分代码,然后告诉你后处理的部分源码里都有............拜托,我就是不想抠源代码才来百度的啊,哎,还是要靠自己抠代码啊。
2023-04-03 17:46:18
5073
8
原创 Paddle Lite在ARM上的应用,以Yolov5为例
Paddle Lite 是一种轻量级、灵活性强、易于扩展的高性能的深度学习预测框架,它可以支持诸如 ARM、OpenCL 、NPU 等等多种终端,同时拥有强大的图优化及预测加速能力。
2023-01-05 16:06:16
2365
1
原创 Ubuntu18.04 安装py-fast-rcnn步骤
因工作需要,在跑模型的时候,需要使用到caffe,网上关于ubuntu18.04安装caffe的步骤各式各样,在经历过三天安装卸载的绝望中,终于编译完成,记录这三天中遇到的坑以及安装步骤,方便后续有需要时查看。
2022-11-27 19:52:28
747
1
docker入门教程,从安装到使用
2024-06-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人