ex1-linearRegression

本练习介绍了线性回归的概念,包括单变量和多变量线性回归。首先,通过实现简单示例函数了解线性回归的基础。接着,详细探讨了单变量线性回归,涉及数据可视化、梯度下降及其更新公式,以及成本函数的计算。最后,选做部分涉及多变量线性回归,涵盖了特征标准化和梯度下降的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

练习1:线性回归


介绍

在本练习中,您将 实现线性回归并了解其在数据上的工作原理。

在开始练习前,需要下载如下的文件进行数据上传

  • ex1data1.txt -单变量的线性回归数据集
  • ex1data2.txt -多变量的线性回归数据集

在整个练习中,涉及如下的必做作业,及标号*选做作业

必做作业为实现单变量的线性回归;选做作业为实现多变量线性回归。

点击屏幕右上方的下载实验数据模块,选择下载,然后再依次选择点击上方的File->Open->Upload,上传刚才下载的数据集。

1 实现简单示例函数

在该部分练习中,将通过代码实现返回一个5*5的对角矩阵。输出与如下相同:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1.1 提交解决方案

在以下代码框中进行如上的实现,完成部分练习后,得到如上的相同结果即为通过。

import numpy as np
###在这里填入代码###
mat = np.zeros((5,5))
for i in range(5):
    mat[i][i]=1
mat
array([[1., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0.],
       [0., 0., 1., 0., 0.],
       [0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 1.]])

2 单变量线性回归

在该部分练习中,将实现单变量线性回归并用来预测餐车的利润。

假设你是一家餐厅的领导,正在考虑在不同的城市开设新的分店。该连锁店已经在不同的城市有了餐车,并且你能够获得每个城市的人口和利润数据。

现在需要使用这些数据来帮助你选择下一个被扩展的城市。

文件ex1data1.txt包含线性回归问题的数据集。第一列数据对应城市人口,第二列数据对应那座城市的餐车的利润。利润为负时表示亏损。

2.1 绘制数据

在开始进入练习之前,对数据进行可视化通常很有用。对于该数据集,可以使用散点图进行可视化,因为它只有两个属性(人口、利润)。

# 引入所需要的库文件
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os

%matplotlib inline
# 数据存储路径
path = 'ex1data1.txt'

# 读入相应的数据文件
data = pd.read_csv(path, header=None,names=['Population','Profit'])

#查看数据的前五条
data.head(20)
Population Profit
0 6.1101 17.59200
1 5.5277 9.13020
2 8.5186 13.66200
3 7.0032 11.85400
4 5.8598 6.82330
5 8.3829 11.88600
6 7.4764 4.34830
7 8.5781 12.00000
8 6.4862 6.59870
9 5.0546 3.81660
10 5.7107 3.25220
11 14.1640 15.50500
12 5.7340 3.15510
13 8.4084 7.22580
14 5.6407 0.71618
15 5.3794 3.51290
16 6.3654 5.30480
17 5.1301 0.56077
18 6.4296 3.65180
19 7.0708 5.38930

接下来需要实现数据可视化的代码,该部分数据绘制出的图像应与如下相同。

要点:

  • 实现散点图可视化
  • 数据分布为红色点
  • 标清横纵坐标名称

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wIJdMHjo-1672217455060)(1-1.png)]

###在这里填入代码###
plt.scatter(data.Population,data.Profit,color='red')
<matplotlib.collections.PathCollection at 0x7ff182b68358>

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ItCVVlnS-1672217455062)(output_8_1.png)]

2.2 梯度下降

在该部分中,将使用梯度下降来选择合适的线性回归参数θ用以拟合给定数据集。

2.2.1 更新公式

线性回归的目的是最小化成本函数:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HspunGV9-1672217455063)(1-2.png)]
假设 h θ ( X ) h_{\theta}(X) hθ(X)由以下线性模型给出:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IOFTQXuJ-1672217455063)(1-3.png)]

回顾一下,模型的参数是 θ j \theta_j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值