自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(90)
  • 收藏
  • 关注

原创 《Learning Langchain》阅读笔记13-Agent(1):Agent Architecture

摘要: Agent 的核心是“能行动”,涉及决策能力、可选方案和环境信息。基于 LLM 的 Agent 应用通过 Tool Calling(提供可选工具)和 Chain-of-Thought(分步推理)实现决策。LangGraph 是 LangChain 团队开发的框架,通过有向图(节点=执行单元,边=数据流/条件)结构化 Agent 流程,支持循环、分支等复杂逻辑。示例展示了搜索和计算工具的调用流程,强调模型自主决定工具使用时机。若需强制优先调用特定工具(如搜索),可跳过初始 LLM 决策以降低延迟,但会

2025-09-11 21:38:09 896

原创 《Learning Langchain》阅读笔记12-RAG(8):RAG的优化策略

本文介绍了AI应用程序中RAG系统的三个核心阶段和优化策略。RAG流程包括索引、检索和生成三个阶段,通过预处理数据、检索相关文档并生成最终输出。为了构建更强大的RAG系统,文章提出了五种优化策略:查询转换(优化用户提问)、路由选择(匹配最佳数据源)、查询构建(转化为数据库指令)、多模态索引(处理复杂数据)和后处理(整合与过滤结果)。这些策略形成了一个完整的优化闭环,从输入处理到输出优化,全面提升RAG系统的性能和准确性。

2025-09-11 16:24:08 817

原创 LeetCode hot 100 每日一题(18)——206.反转链表

力扣206.反转链表

2025-08-27 15:40:06 163

原创 《Chain of Thought Monitorability》论文解读

《Chain of Thought Monitorability》论文解读

2025-08-04 00:16:15 684

原创 cs336之注意pytorch的tensor在哪里?(assert的使用)

记住:无论何时你在pytorch中有一个张量tensor,你应该始终问一个问题:它当前位于哪里?注意它在CPU还是在GPU中。要判断它在哪里,可以使用python的assert断言语句。

2025-08-02 11:18:17 909

原创 cs336 assignment1 作业环境配置

cs336 assignment1 前期环境配置

2025-07-31 20:49:56 1522

原创 uv使用教程

uv使用教程

2025-07-31 17:57:26 586

原创 cs336系列之Lecture 1—Tokenization

Lecture 1—Tokenization

2025-07-31 14:14:58 1218

原创 IELTS阅读C16-Test 4

IELTS阅读C16-Test 4

2025-07-31 09:21:01 897

原创 IELTS阅读C16-Test 3

IELTS阅读C16-Test 3

2025-07-30 10:51:59 255

原创 IELTS阅读C16-Test 2

IELTS阅读C16-Test 2

2025-07-29 11:25:25 748

原创 IELTS听力C16-Test 1

IELTS听力C16-Test 1

2025-07-24 11:38:24 806

原创 IELTS 阅读C16-Test 1

IELTS 阅读C16-Test 1总结复盘

2025-07-22 15:55:17 871

原创 IELTS听力C15-Test 1-Section 4

IELTS听力C15-Test 1-Section 4

2025-07-22 10:52:57 270

原创 IELTS 阅读C15-Test 2-Passage 3

IELTS 阅读C15-Test 2-Passage 3

2025-07-21 12:32:47 404

原创 IELTS听力C15-Test 1-Section 3

IELTS听力C15-Test 1-Section 3

2025-07-21 11:17:22 1115

原创 IELTS 阅读C15-Test 2-Passage 2

IELTS 阅读C15-Test 2-Passage 2

2025-07-19 20:35:49 694

原创 IELTS 阅读C15-Test 2-Passage 1

IELTS 阅读C15-Test 2-Passage 1

2025-07-18 12:03:51 749

原创 IELTS听力C15-Test 1-Section 2

IELTS听力C15-Test 1-Section 2

2025-07-18 10:39:33 491

原创 IELTS 阅读C15-test1-passage 3 复盘

IELTS 阅读C15-test1-passage 3 复盘

2025-07-17 12:16:37 829

原创 IELTS听力C15-test1-section 1 复盘

IELTS听力C15-test1-section 1 复盘

2025-07-16 11:32:38 591

原创 IELTS 阅读C15-test1-passage 2 复盘

C15-test-passage2复盘

2025-07-15 11:15:48 2521

原创 ReAct论文解读(2)—方法介绍

ReAct introduces a novel approach where large language models (LLMs) interleave reasoning traces and task-specific actions synergistically. This enables dynamic reasoning to guide actions while leveraging external information

2025-07-14 10:51:31 1175

原创 ReAct论文解读(1)—什么是ReAct?

摘要:ReAct是一种结合推理(Reasoning)与行动(Acting)的大语言模型提示方法,由Google于2022年提出。它让模型不仅能分步思考,还能主动调用工具(如API)获取外部信息,形成"思考-行动-观察-回答"的闭环流程。与传统Chain-of-Thought(CoT)单纯推理不同,ReAct强调动态交互能力,适用于需要实时数据查询、多步骤任务等场景,显著提升了模型解决复杂问题的能力。典型应用包括工具增强型问答、实时信息检索和任务规划等场景。

2025-07-13 15:25:56 979

原创 Transformer论文详细解读(3)之Attention简单理解

Transformer中的注意力机制通过查询(Query)、键(Key)和值(Value)三个向量实现信息筛选。查询向量表示当前需求,键向量衡量输入相关性,值向量包含实际信息。计算流程包括:1)用点积计算查询与键的相似度;2)通过Softmax转化为权重;3)对值向量加权求和得到输出。这种机制能动态聚焦重要信息,如在翻译任务中,模型会自动关注与当前输出词最相关的输入词。整个过程实现了对输入的选择性关注,是Transformer的核心设计。

2025-07-09 16:42:14 777

原创 Transformer论文详细解读(2)之Encoder与Decoder

本文深入解析Transformer模型中的编码器(Encoder)与解码器(Decoder)结构。编码器由6层相同模块堆叠而成,每层包含多头自注意力机制和位置式前馈网络,使用残差连接和层归一化优化训练。解码器同样采用6层结构,在编码器基础上增加第三层用于处理编码器输出,并采用掩码自注意力确保自回归生成。文章详细介绍了各组件的工作原理,包括注意力机制如何捕捉词间关系、残差连接防止梯度消失、层归一化稳定训练等关键设计,为理解Transformer的核心架构提供了清晰的技术脉络。

2025-07-04 11:26:28 1268

原创 Transformer论文详细解读(1)

本文介绍了Transformer论文的Abstract、Introduction、Background以及模型整体架构Model Architecture

2025-07-04 10:39:01 1033

原创 RAG流程总结

RAG流程分为检索和生成两个阶段:首先将知识库数据切块并编码为向量存储在向量数据库中;用户查询同样被编码后,通过向量相似度检索相关文档片段。然后将检索结果与原始问题拼接,输入大语言模型生成最终回答。整个流程中,大语言模型被调用两次:第一次用于生成查询和文档的向量表示,第二次用于整合检索信息生成自然语言回答。这种架构既保证了信息检索的准确性,又确保了回答的流畅性和上下文相关性。

2025-07-02 11:03:04 680

原创 反向传播 & 梯度消失

反向传播与梯度消失问题。反向传播是神经网络训练的核心算法,通过链式法则计算梯度并反向传播误差,以更新网络参数(权重和偏置)。其过程包括:前向传播计算输出→计算损失函数误差→反向传播梯度→参数优化→迭代训练。 梯度消失是深层网络的常见问题,由于反向传播时梯度逐层缩小(尤其在使用sigmoid/tanh激活函数时),导致网络前层参数更新缓慢甚至停滞。这严重影响深层网络的训练效果,使早期层难以学习有效特征。解决该问题需要改进激活函数或采用残差连接等技术。

2025-07-01 21:28:38 928

原创 深度学习常见的激活函数

本文介绍了五种常用激活函数及其特性: Sigmoid:输出范围(0,1),适用于二分类但存在梯度消失问题; ReLU:简单高效(输出≥0),但可能导致神经元死亡; Tanh:输出(-1,1)中心对称,有助于收敛但仍会梯度消失; Linear:恒等映射,适用于回归但缺乏非线性; Softmax:将输入转化为概率分布(总和为1),多分类任务首选。文末对比表总结了各函数的输出范围、优缺点,并附函数图像直观展示其形态差异。

2025-07-01 21:21:25 861

原创 大模型提示词技巧

本文介绍了大语言模型的关键参数设置和提示词设计技巧。参数设置包括Temperature(控制输出随机性)、Top_p(核采样技术)、Max Length(控制生成长度)等,建议针对不同任务调整参数。提示词设计应包含指令、上下文等要素,遵循迭代优化原则,强调具体性和避免模糊表述。文章推荐使用正向指令并提供了结构化提示词示例。参数调整和提示词设计都需要大量实验来确定最优方案。

2025-06-30 17:03:59 991

原创 维纳滤波器

维纳滤波是一种基于最小均方误差准则的信号降噪方法。本文介绍了离散时域维纳滤波的推导过程,通过正交原理建立维纳-霍普夫方程,求解最优滤波器系数。当观测信号x[n]包含真实信号y[n]和噪声v[n]时,滤波器设计需要真实信号和噪声的自相关函数Ryy和Rvv。最终滤波器系数可通过矩阵运算h=Rxx^(-1)Rxy求解,其中Rxx=Ryy+Rvv,Rxy=Ryy。该方法适用于信号与噪声统计特性已知的场景,为语音、图像等信号处理提供了理论基础。

2025-06-25 16:29:05 998

原创 《Learning Langchain》阅读笔记11-RAG(7)索引优化:RAPTOR方法和ColBERT方法

介绍两种方法:RAPTOR:用于树状检索的递归抽象处理,ColBERT:优化嵌入,这两种方法都更适用于多个文档检索的情况,尤其是第二个ColBERT方法。

2025-04-28 12:53:18 1075

原创 《Learning Langchain》阅读笔记10-RAG(6)索引优化:MultiVectorRetriever方法

介绍langchain中RAG索引优化的MultiVectorRetriever方法

2025-04-27 17:30:37 1128

原创 《Learning Langchain》阅读笔记9-RAG(5)跟踪文档的更改

首先,你需要创建一个记录管理器(record manager),用于追踪哪些文档之前已经被索引过。然后,使用 index 函数 将你的向量存储(vector store)与新的文档列表进行同步。在这个示例中,我们使用的是增量模式(incremental mode),因此任何与之前已有文档 ID 相同的新文档,都会用新版本进行替换。

2025-04-26 13:18:38 622

原创 《Learning Langchain》阅读笔记8-RAG(4)在vector store中存储embbdings

本小节我们学习了如何在vector store中存储embeddings,并且使用了PostgreSQL数据库。通过docker连接数据库,还通过插件PGVector这个为 PostgreSQL 数据库设计的向量(embedding)存储与相似度搜索插件,使得你可以在 PostgreSQL 中直接存储向量,并进行高效的相似度检索(vector similarity search)。最后还使用了免费的可视化PostgreSQL数据库的软件pgAdmin对数据库的tables中的数据进行查看。

2025-04-25 18:17:37 1394

原创 《Learning Langchain》阅读笔记7-RAG(3)生成embeddings

在前面的部分中,我们已经学习了如何将文档读取为文本以及如何将文本切分为chunks,这一节我们来讲讲如何生成文本嵌入embeddings。

2025-04-24 11:51:05 513

原创 《Learning Langchain》阅读笔记6-RAG(2)将文本分成块

上一章中,我们已经将文档转换为文本,在langchain_community.document_loaders中调用合适的loader,以加载不同类型的文件比如.txt、.pdf等。下一步,我们将要将文本分为chunks,也就是将文本分为块。

2025-04-23 11:35:15 1136

原创 《Learning Langchain》阅读笔记5-RAG(1)将文档转换为文本

在上一章中,我们学习了使用 LangChain 创建 LLM 应用程序的重要构建块。我们还构建了一个简单的 AI 聊天机器人,它由发送给模型的提示和模型生成的输出组成。但是,这个简单的聊天机器人存在一些主要限制。如果你的使用场景需要模型未曾训练过的知识怎么办?例如,假设你想使用 AI 询问有关公司的问题,但信息包含在私人 PDF 或其他类型的文档中。

2025-04-21 17:33:33 669

原创 《Learning Langchain》阅读笔记4-基于 Gemini 的 Langchain:组装 LLM 应用的多个部分

到目前为止,我们所了解的关键组件是LangChain框架的基本构建块。这就引出了一个关键问题:我们如何有效地结合它们来构建LLM应用程序?

2025-04-20 16:40:46 1126

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除