拉普拉斯矩阵的三种形式

edge_index, edge_weight = get_laplacian(edge_index, edge_weight,
                                                normalization, dtype,
                                                num_nodes)

Cheb_Conv中通过get_laplacian()函数获取拉普拉斯矩阵,这样获取的拉普拉斯矩阵有三种形式,通过normalization控制。

    if normalization is not None:
        assert normalization in ['sym', 'rw']  # 'Invalid normalization'

 情况一:如果normalization是None:

L = D - A

情况二:如果normalization是'sys):

L = I + D^{-1/2} A D^{-1/2}    

情况三: 如果normalization是'rw':

L =  I + D^{-1} A   

情况二和情况三都是添加了自环。 

### 关于拉普拉斯矩阵图滤波器在图像处理和计算机图形学中的应用 #### 定义与原理 拉普拉斯矩阵(Laplacian Matrix),也称为离散拉普拉斯算子,在图像处理和计算机图形学中扮演着重要角色。该矩阵通过构建图像像素之间的连接关系来表示图像的结构特性[^1]。 #### 构建方法 为了创建一个基于图像的拉普拉斯矩阵,通常会按照如下方式操作: - 将图像视为无向加权图G=(V,E),其中顶点集V代表图像中的每一个像素位置; - 边集合E则由相邻像素间的权重组成,这些权重可以依据灰度差异或其他特征定义; - 对角线上元素为节点i对应的邻居边权重之和;非对角线上的元素如果两个节点相连,则取负的相应边权重值,不连通即为0。 ```python import numpy as np from scipy.sparse import diags, csr_matrix def build_laplacian(image): h, w = image.shape[:2] # 创建稀疏邻接矩阵 rows = [] cols = [] vals = [] for i in range(1, h - 1): for j in range(1, w - 1): center = image[i,j] neighbors = [ (image[i-1,j], (-1,i*w+j), ((i-1)*w+j)), (image[i+1,j], (-1,i*w+j), ((i+1)*w+j)), (image[i,j-1], (-1,i*w+j), (i*w+(j-1))), (image[i,j+1], (-1,i*w+j), (i*w+(j+1))) ] degree = sum(abs(center-n[0]) for n in neighbors) rows.extend([n[1][1]]*len(neighbors)) cols.append(i*w+j) vals.append(degree) for neighbor in neighbors: rows.append(neighbor[2]) cols.append(n[1][1]) vals.append(neighbor[0]) adjacency = csr_matrix((vals,(rows,cols)), shape=(h*w,h*w)) degrees = np.array(adjacency.sum(axis=1)).flatten() laplacian = diags(degrees) - adjacency return laplacian ``` #### 应用场景 利用上述构建好的拉普拉斯矩阵,可以在多个方面发挥其作用,比如但不限于: - **边缘保留平滑**:通过对原始信号施加特定形式的能量最小化约束条件实现去噪的同时保护边界信息[^2]。 - **纹理分析与合成**:借助谱分解技术提取局部模式并应用于新样本生成过程之中[^3]。 - **形状描述符计算**:作为衡量物体表面曲率特性的工具之一参与三维模型检索任务当中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值