
YOLO目标检测算法改进
文章平均质量分 86
本专栏提供 YOLOX、YOLOv5、YOLOv7、YOLOv8 目标检测算法的各种有效改进机制,欢迎大家订阅我的专栏一起学习YOLO。专栏内容持续更新中!
Mais10011
计算机硕士在读
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO8 改进 009:引入 ASFF 对 YOLOv8 检测头进行优化(适用于小目标检测任务)
金字塔特征表示法是解决物体检测中尺度变化难题的常用方法。然而,不同特征尺度之间的不一致性是基于特征金字塔的单次检测器的主要局限。在这项工作中,我们提出了一种新颖的、数据驱动的金字塔特征融合策略,即自适应空间特征融合(ASFF)。它通过学习空间过滤冲突信息的方法来消除不一致性,从而提高特征的尺度不变性,并且几乎不增加推理开销。原创 2024-12-19 21:11:45 · 1257 阅读 · 0 评论 -
YOLOX 改进 007:SPD-Conv 空间深度转换卷积替换 CNN 传统卷积神经网络
SPD-Conv(Space-to-Depth Convolution)是一种新的 CNN 模块,旨在提高低分辨率图像和小物体目标检测的性能。它通过将特征图的空间维度转换为深度维度来增强特征表示,从而弥补低分辨率图像信息不足的问题。在本文中,给大家带来的教程是 YOLOX 之 使用 SPD-Conv 空间深度转换卷积替换 CNN 传统卷积神经网络。原创 2024-08-09 03:38:01 · 1163 阅读 · 0 评论 -
YOLOv8 改进 006:SPD-Conv 空间深度转换卷积替换 CNN 传统卷积神经网络
SPD-Conv(Space-to-Depth Convolution)是一种新的 CNN 模块,旨在提高低分辨率图像和小物体目标检测的性能。它通过将特征图的空间维度转换为深度维度来增强特征表示,从而弥补低分辨率图像信息不足的问题。在本文中,给大家带来的教程是 YOLOv8 之 使用 SPD-Conv 空间深度转换卷积替换 CNN 传统卷积神经网络。原创 2024-08-09 02:40:43 · 6297 阅读 · 2 评论 -
YOLOv5 改进 005:Backbone 添加 SimAM 注意力机制
本文介绍了一种简单而有效的注意力模块,即简单注意力模块(SimAM)。SimAM 是一种无参数注意力模块,它能够在增强神经网络的表示能力的同时,而不会显著增加计算开销。在本文中,给大家带来的教程是在原来的主干网络最后添加 SimAM 注意力机制。原创 2024-08-07 13:55:04 · 1187 阅读 · 0 评论 -
YOLOX 改进 004:Backbone 添加 SimAM 注意力机制
本文介绍了一种简单而有效的注意力模块,即简单注意力模块(SimAM)。SimAM 是一种无参数注意力模块,它能够在增强神经网络的表示能力的同时,而不会显著增加计算开销。在本文中,给大家带来的教程是在原来的主干网络添加 SimAM 注意力机制。原创 2024-08-07 03:44:28 · 1761 阅读 · 0 评论 -
YOLOv8改进003:Neck 添加双向特征金字塔网络 BiFPN + 添加小目标检测头(小目标检测大量涨点)
YOLOv8 目标检测算法改进之 Neck 添加双向特征金字塔网络 BiFPN 并结合《YOLOv8改进002:添加小目标检测头(小目标检测大量涨点)》一起改进,实现小目标检测大幅度涨点。原创 2024-08-06 16:32:49 · 5299 阅读 · 30 评论 -
YOLOv8改进002:添加小目标检测头(小目标检测大量涨点)
YOLOv8 目标检测算法改进之添加小目标检测头,亲测在小目标检测的数据集上有大幅度的涨点效果(mAP直接涨了 0.04 左右)。原创 2024-08-05 01:12:35 · 8235 阅读 · 15 评论 -
YOLOv8改进001:Backbone 的下采样替换为 RepVGGBlock 模块
YOLOv8 目标检测算法改进之主干网络下采样替换为 RepVGGBlock 模块。原创 2024-08-04 21:00:23 · 2231 阅读 · 1 评论