YOLOV5 网络结构 yaml 文件参数理解

本文详细解析了YOLOV5模型的配置文件yolov5s.yaml,包括参数如nc(类别数)、depth_multiple(模型深度超参数)和width_multiple(模型宽度超参数)。同时,深入介绍了模型的backbone和head部分,以及模型解析函数parse_model的工作原理。通过对yaml文件中参数的解读,读者可以更好地理解和构建自己的YOLOV5模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOV5:训练自己数据集
YOLOV5: Mosaic 数据增强
YOLOV5:网络模块理解


这里对 YOLOV5 代码中解析模型部分代码进行理解。
在这里插入图片描述


前言

【个人学习笔记记录,如有错误,欢迎指正】

YOLO-V5 代码仓库地址:https://github.com/ultralytics/yolov5


一、ymal 文件理解

1.模型存在地址

YOLOV5 模型配置文件存放在 modules 文件夹下:这里使用的是 yolov5s.yaml 。

2. yaml 内容理解

yolov5s.yaml 内容理解,这里是官方给出的文件内容。

1.parameters

nc: 2  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

【nc】: 类别个数
【depth_multiple】:模型深度超参数(卷积模块的个数)
【width_multiple】:模型宽度超参数(anchors 个数)

2.anchors

anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

三个不同尺寸的特征图上,默认 anchors 的高宽值。

3.backbone、head

backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]]
### 绘制YOLOv9神经网络结构图的方法 为了基于`YOLOv9`的YAML配置文件生成神经网络架构图,可以遵循以下方法: #### 解析 YAML 文件 首先,理解并解析 `yaml` 配置文件的内容至关重要。此文件定义了模型的各种属性,包括但不限于输入尺寸、模块列表及其参数等[^2]。 对于每一个模块,在配置文件中通常会有如下字段: - **from**: 表明该层来自哪个节点。 - **number (n)**: 层的数量。 - **module (m)**: 使用的具体类名。 - **args**: 构造函数所需的额外参数。 这些信息有助于构建完整的计算流程图表。 #### 创建可视化工具或脚本 利用Python库如Matplotlib, NetworkX 或者专门用于绘制深度学习模型图形化的工具TensorBoard可以帮助完成这项工作。下面是一个简单的例子来展示如何读取`.yaml`文件并通过代码自动生成图像表示形式: ```python import yaml import matplotlib.pyplot as plt from networkx import DiGraph, draw_networkx def parse_yaml(file_path): with open(file_path, 'r') as file: config = yaml.safe_load(file) return config['backbone'], config['head'] def build_graph(backbone_cfg, head_cfg=None): G = DiGraph() def add_nodes_and_edges(cfg_section, prefix=""): for idx, layer in enumerate(cfg_section): node_id = f"{prefix}{idx}" label = type(layer).__name__ if isinstance(layer, dict) else str(layer) G.add_node(node_id, label=label) from_layers = layer.get('from', []) if not isinstance(from_layers, list): from_layers = [from_layers] for src in map(str, from_layers): edge_label = '' # 可选:设置边标签 try: int(src) G.add_edge(f"{prefix}{src}", node_id, label=edge_label) except ValueError: pass add_nodes_and_edges(backbone_cfg, "b_") if head_cfg is not None: add_nodes_and_edges(head_cfg, "h_") pos = nx.spring_layout(G) fig, ax = plt.subplots(figsize=(10, 8)) draw_networkx(G, pos=pos, arrows=True, with_labels=True, font_weight='bold') plt.show() if __name__ == "__main__": backbone, head = parse_yaml('./path/to/yolov9.yaml') build_graph(backbone, head) ``` 这段程序通过遍历给定的配置项创建了一个有向无环图(DAG),其中每个顶点代表一层操作,每条边则指示数据流动的方向。最后调用了matplotlib和networkx来进行渲染显示。 请注意实际应用时可能需要调整上述模板以适应具体的框架版本差异以及更复杂的连接模式。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值