- 博客(1916)
- 收藏
- 关注
原创 MoR vs MoE架构对比:更少参数、更快推理的大模型新选择
本文将深入分析递归混合(MoR)与专家混合(MoE)两种架构在大语言模型中的技术特性差异,探讨各自的适用场景和实现机制,并从架构设计、参数效率、推理性能等多个维度进行全面对比。
2025-07-29 18:57:13
296
原创 搜索结果太乱?5种重排序模型让你的搜索系统准确率提升40%
本文将系统性地分析重排序模型的技术原理,深入探讨从传统学习排序方法到基于Transformer架构的前沿解决方案。
2025-07-28 18:50:40
516
原创 LLM开发者必备:掌握21种分块策略让RAG应用性能翻倍
本文将系统介绍21种文本分块策略,从基础方法到高级技术,并详细分析每种策略的适用场景,以帮助开发者构建更加可靠的RAG系统。
2025-07-27 18:58:12
981
原创 AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
本文将深入探讨如何运用LangChain和LangGraph这两个构建AI代理、RAG应用和LLM应用的核心工具,系统性地实现上下文工程技术,以实现AI代理性能的全面优化。
2025-07-26 18:43:52
933
原创 2025年AI智能体开发完全指南:10个GitHub顶级教程资源助你从入门到精通
本文精选了十个高质量的GitHub开源项目,涵盖从基础理论到实践应用的全方位学习路径,为AI开发者提供系统性的技术资源。
2025-07-25 16:50:18
1123
原创 DGMR压缩技术:让大规模视觉Transformer模型体积减半而性能不减
DGMR采用基于Gram-Schmidt的剪枝策略,系统性地移除MLP层中的冗余神经元,同时通过精心设计的策略确保剩余权重的多样性,从而在知识蒸馏过程中实现高效的性能恢复。
2025-07-24 21:50:00
1032
原创 Google DeepMind发布MoR架构:50%参数超越传统Transformer,推理速度提升2倍
本文深入分析MoR架构的核心技术创新,详细阐述其在令牌级推理、内存管理和训练效率方面相对于传统Transformer架构的显著优势。
2025-07-23 19:12:03
757
原创 从零构建智能对话助手:LangGraph + ReAct 实现具备记忆功能的 AI 智能体
本文将从理论基础到实践应用,系统性地介绍如何使用 LangGraph 构建具备记忆能力的 ReAct 智能体。通过详细的代码示例和技术分析,读者将深入理解智能体的工作原理,掌握从基础工作流到高级记忆系统的完整实现方法,为构建下一代智能应用奠定坚实的技术基础。
2025-07-22 19:34:05
885
1
原创 最大熵逆强化学习:理论基础、数学推导与工程实现
本文重点讨论逆强化学习(Inverse Reinforcement Learning, IRL),这是模仿学习的重要分支,其核心目标是基于演示数据学习能够最大化期望奖励的最优策略。
2025-07-21 19:38:38
660
原创 从零搭建智能搜索代理:LangGraph + 实时搜索 + PDF导出完整项目实战
本系统的核心特性包括:基于智能判断机制的自动网络搜索触发、跨多轮对话的上下文状态管理、多策略搜索机制与智能回退、透明的信息源追溯体系,以及专业级PDF文档生成功能。
2025-07-20 18:20:09
1175
原创 GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
2025-07-19 21:09:41
1095
原创 差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨如何在模型训练过程中平衡实用性与形式化隐私保证这一关键问题。我们采用带有噪声梯度更新的模拟DP-SGD算法实现差分隐私机器学习。
2025-07-18 20:21:50
1081
原创 AI代理内存消耗过大?9种优化策略对比分析
本文将深入探讨并实现九种从基础到高级的内存优化技术,涵盖从简单的顺序存储方法到复杂的类操作系统内存管理策略。通过系统性的代码实现和性能评估,我们将分析每种技术的适用场景、优势特点以及潜在限制。
2025-07-17 19:12:39
1426
原创 SingLoRA:单矩阵架构减半参数量,让大模型微调更稳定高效
SingLoRA作为一种创新的低秩适应方法,通过摒弃传统的双矩阵架构,采用单矩阵对称更新策略,在简化模型结构的同时显著提升了训练稳定性和参数效率。
2025-07-16 15:52:14
847
原创 告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
本文将介绍 10 个在数据处理中至关重要的 Pandas 技术模式。这些模式能够显著减少调试时间,提升代码的可维护性,并构建更加清晰的数据处理流水线。
2025-07-15 16:03:27
1011
原创 让大语言模型在不知道答案时拒绝回答:KnowOrNot框架防止AI幻觉
KnowOrNot开源框架。该框架通过创建可保证的"知识库外"测试场景,评估AI系统是否能够正确识别其知识边界并在信息不足时采取适当的拒绝回答策略。
2025-07-14 17:31:51
613
原创 贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。
2025-07-13 11:01:16
3818
1
原创 构建高性能LLM推理服务的完整方案:单GPU处理172个查询/秒、10万并发仅需15美元/小时
本文将通过系统性实验不同的优化技术来构建自定义LLaMA模型服务,目标是高效处理约102,000个并行查询请求,并通过对比分析确定最优解决方案。
2025-07-12 10:55:47
3902
原创 强化学习算法基准测试:6种算法在多智能体环境中的表现实测
本文建立了多智能体强化学习的标准化评估流程,系统比较了各种表格方法在竞争环境中的性能表现,并通过实证分析明确了表格方法的适用边界,为深入理解强化学习算法的可扩展性问题提供了重要参考。
2025-07-10 11:58:12
4466
1
原创 刚发布的最新版本怎么用?YOLOv13新手教程带你快速上手
本文将详细介绍YOLOv13的完整实现流程,涵盖数据集准备、模型训练、验证评估以及实际应用等关键环节。
2025-07-09 09:36:53
4300
1
原创 Flow Matching生成模型:从理论基础到Pytorch代码实现
本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。
2025-07-08 10:28:35
4105
原创 信息检索重排序技术深度解析:Cross-Encoders、ColBERT与大语言模型方法的实践对比
本文将深入分析三种主流的重排序技术:Cross-Encoders(交叉编码器)、ColBERT以及基于大语言模型的重排序器,并详细阐述各方案在实际应用中的性能表现、成本考量以及适用场景。
2025-07-07 10:38:54
4038
原创 Python 3.14七大新特性总结:从t-string模板到GIL并发优化
Python 3.14已进入测试阶段,根据PEP 745发布计划,该版本已停止引入新功能,也就是说新特征就应该已经固定下来了。所以本文基于当前最新的beta 2版本,深入分析了Python 3.14中的七项核心新特性。
2025-07-06 10:25:46
4289
原创 量化交易隐藏模式识别方法:用潜在高斯混合模型识别交易机会
本文将从技术实现角度阐述LGMM相对于传统方法的优势,通过图表对比分析展示其效果,并详细说明量化分析师和技术分析师如何应用此方法优化投资决策。
2025-07-05 11:46:41
4298
原创 掌握这10个Jupyter魔法命令,让你的数据分析效率提升3倍
本文将详细介绍十个在实际数据科学项目中最为实用的魔法命令,并通过传粉者数据分析项目进行具体演示。
2025-07-04 10:04:07
4329
原创 大语言模型也可以进行图像分割:使用Gemini实现工业异物检测完整代码示例
本文将通过一个实际应用场景——工业传送带异物检测,详细介绍如何利用Gemini的图像分割能力构建完整的解决方案。
2025-07-03 10:43:54
7988
原创 CUDA性能优化实战:7个步骤让并行归约算法提升10倍效率
本文深入探讨了一个经典的并行计算算法——并行归约(Parallel Reduction)的性能优化过程,通过七个渐进式的优化步骤,展示了如何将算法性能提升至极致。
2025-07-02 10:39:47
4886
原创 Python时间序列平滑技术完全指南:6种主流方法原理与实战应用
本文将系统介绍六种广泛应用的时间序列平滑技术,从技术原理、参数配置、性能特征以及适用场景等多个维度进行深入分析。
2025-07-01 10:44:45
4574
1
原创 Python AutoML框架选型攻略:7个工具性能对比与应用指南
本文将系统介绍在实际项目中经过验证的主要Python AutoML库,分析各自的技术特点和适用场景。
2025-06-30 10:15:31
4193
原创 大数据集特征工程实践:将54万样本预测误差降低68%的技术路径与代码实现详解
本文通过实际案例演示特征工程在回归任务中的应用效果,重点分析包含数值型、分类型和时间序列特征的大规模表格数据集的处理方法。
2025-06-29 11:11:57
4147
原创 Arctic长序列训练技术:百万级Token序列的可扩展高效训练方法
Arctic长序列训练(Arctic Long Sequence Training, ALST)技术能够在4个H100节点上对Meta的Llama-8B模型进行高达1500万token序列的训练,使得长序列训练在标准GPU集群甚至单个GPU上都能实现快速、高效且易于部署的执行。
2025-06-28 10:45:02
3768
1
原创 小模型当老师效果更好:借助RLTs方法7B参数击败671B,训练成本暴降99%
强化学习教师模型代表了训练推理语言模型的范式转变。通过从答案开始并专注于解释生成,RLT将训练过程转化为师生协作游戏,实现多方共赢:教师学会有效教学,学生从定制化课程中受益,工程师获得性能更好且成本更低的模型解决方案。
2025-06-27 10:36:13
4328
原创 基于Dyna-Q强化学习的智能营销系统:融合贝叶斯生存模型与Transformer注意力机制的电商客户重参与策略优化
本文提出了一个集成三种核心技术的下一代智能优惠券分发系统:基于贝叶斯生存模型的重购概率预测、采用注意力机制的Transformer利润预测模型,以及用于策略持续优化的Dyna-Q强化学习代理。
2025-06-26 10:08:04
4020
原创 解决语义搜索痛点,基于对比学习的领域特定文本嵌入模型微调实践
本文深入探讨了基于对比学习的嵌入模型微调技术,并通过AI职位匹配的实际案例验证了该方法的有效性。微调后的模型在测试集上实现了100%的准确率,充分证明了针对特定领域进行模型优化的必要性和可行性。
2025-06-25 10:41:11
3759
原创 基于LSTM自编码器与KMeans聚类的时间序列无监督异常检测方法
本文提出的基于LSTM自编码器和KMeans聚类的组合方法,通过整合深度学习的序列建模能力与无监督聚类的模式分组优势,实现了对时间序列数据中异常模式的有效检测,且无需依赖标注的异常样本进行监督学习。
2025-06-24 10:57:20
4340
原创 混合效应模型原理与实现:从理论到代码的完整解析
混合效应模型并非神秘的技术,而是普通回归方法在层次化结构建模方面的原理性扩展。这种理解将成为机器学习工具箱中下一个技术突破的重要基础。
2025-06-23 10:18:35
4346
原创 Chonkie:面向大语言模型的轻量级文本分块处理库
Chonkie是一个专为大语言模型(LLM)应用场景设计的轻量级文本分块处理库,提供高效的文本分割和管理解决方案。
2025-06-22 10:41:08
7502
1
原创 机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
2025-06-21 09:33:19
4650
原创 从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
本文详细介绍了一个简化版 Veo 3 文本到视频生成模型的构建过程。首先进行了数据预处理,涵盖了去重、不安全内容过滤、质量合规性检查以及数据标注等环节。
2025-06-20 14:12:16
1356
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人