计算机视觉

本文探讨了计算机视觉领域,重点关注基于YOLOv4的目标检测和跟踪,包括使用离散卡尔曼滤波器处理遮挡问题,以及Scaled-YOLOv4在COCO上的优秀性能。此外,还涉及3D目标检测、火焰检测,以及利用AgileGAN进行风格化肖像画生成。在无人驾驶部分,提到了WoodScape项目,以及运动分割、2D目标检测和语义分割的最新研究进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机视觉

目标检测

基于YOLOv4的目标跟踪

采用离散卡尔曼滤波器解决遮挡或非检测问题

源码: https://github.com/pattylo/Autonomous-Object-Tracking-UAV-System

Scaled-YOLOv4 :YOLOv4-large在COCO上最高可达55.8 AP!YOLOv4-tiny的模型实现了1774 FPS!

论文: https://arxiv.org/abs/2011.08036

代码: https://github.com/WongKinYiu/ScaledYOLOv4

yoloV4 + 3D目标检测及跟踪

在这里插入图片描述

视频:https://youtu.be/8kPY1fQhZtk

相关论文:待发布

yolov5+火焰检测

火焰检测数据集: https://github.com/OlafenwaMoses/FireNET/releases/download/v1.0/fire-dataset.zip

数据集格式转换代码: https://github.com/ai-coodinator/xml_to_textYolo

样例:

在这里插入图片描述

人脸AI处理

风格肖像画

AgileGAN:一个可以通过 inversion-consistent 迁移学习生成高质量风格化肖像的框架。引入了一种新的分层变分自编码器,还提出属性感知生成器。在创建高质量和高分辨率(1024×1024)肖像风格化方面提供了更大的灵活性,只需要有限数量的风格样本(100)和较短的训练时间(1小时)。

源码: https://guoxiansong.github.io/homepage/agilegan.html

在线demo: http://www.agilegan.com/

在这里插入图片描述

无人驾驶

源码及数据集: https://github.com/valeoai/WoodScape
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

运动分割

在这里插入图片描述

2D目标检测

在这里插入图片描述

语义分割

在这里插入图片描述

简介: 将Transformer与MLP解码器结合,性能优于SETR等

参考论文: https://arxiv.org/abs/2105.15203

代码: https://github.com/NVlabs/SegFormer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值