leetcodeSQL解题:3564. 季节性销售分析
题目:
表:sales
±--------------±--------+
| Column Name | Type |
±--------------±--------+
| sale_id | int |
| product_id | int |
| sale_date | date |
| quantity | int |
| price | decimal |
±--------------±--------+
sale_id 是这张表的唯一主键。
每一行包含一件产品的销售信息,包括 product_id,销售日期,销售数量,以及单价。
表:products
±--------------±--------+
| Column Name | Type |
±--------------±--------+
| product_id | int |
| product_name | varchar |
| category | varchar |
±--------------±--------+
product_id 是这张表的唯一主键。
每一行包含一件产品的信息,包括它的名字和分类。
编写一个解决方案来找到每个季节最受欢迎的产品分类。季节定义如下:
冬季:十二月,一月,二月
春季:三月,四月,五月
夏季:六月,七月,八月
秋季:九月,十月,十一月
一个 分类 的 受欢迎度 由某个 季节 的 总销售量 决定。如果有并列,选择总收入最高的类别 (quantity × price)。
返回结果表以季节 升序 排序。
示例:
输入:
sales 表:
±--------±-----------±-----------±---------±------+
| sale_id | product_id | sale_date | quantity | price |
±--------±-----------±-----------±---------±------+
| 1 | 1 | 2023-01-15 | 5 | 10.00 |
| 2 | 2 | 2023-01-20 | 4 | 15.00 |
| 3 | 3 | 2023-03-10 | 3 | 18.00 |
| 4 | 4 | 2023-04-05 | 1 | 20.00 |
| 5 | 1 | 2023-05-20 | 2 | 10.00 |
| 6 | 2 | 2023-06-12 | 4 | 15.00 |
| 7 | 5 | 2023-06-15 | 5 | 12.00 |
| 8 | 3 | 2023-07-24 | 2 | 18.00 |
| 9 | 4 | 2023-08-01 | 5 | 20.00 |
| 10 | 5 | 2023-09-03 | 3 | 12.00 |
| 11 | 1 | 2023-09-25 | 6 | 10.00 |
| 12 | 2 | 2023-11-10 | 4 | 15.00 |
| 13 | 3 | 2023-12-05 | 6 | 18.00 |
| 14 | 4 | 2023-12-22 | 3 | 20.00 |
| 15 | 5 | 2024-02-14 | 2 | 12.00 |
±--------±-----------±-----------±---------±------+
products 表:
±-----------±----------------±---------+
| product_id | product_name | category |
±-----------±----------------±---------+
| 1 | Warm Jacket | Apparel |
| 2 | Designer Jeans | Apparel |
| 3 | Cutting Board | Kitchen |
| 4 | Smart Speaker | Tech |
| 5 | Yoga Mat | Fitness |
±-----------±----------------±---------+
输出:
±--------±---------±---------------±--------------+
| season | category | total_quantity | total_revenue |
±--------±---------±---------------±--------------+
| Fall | Apparel | 10 | 120.00 |
| Spring | Kitchen | 3 | 54.00 |
| Summer | Tech | 5 | 100.00 |
| Winter | Apparel | 9 | 110.00 |
±--------±---------±---------------±-------
参考解法:
with temp1 as(
select
CASE
WHEN MONTH(sale_date) IN (