基于ViT(Vision_Transformer)识别七龙珠超级赛亚人

本文介绍了基于ViT(Vision_Transformer)模型识别七龙珠超级赛亚人的深度学习项目。通过加载预训练的ViT模型,并调整最后层以适应二分类任务,经过10个epoch的训练,模型取得了95.99%的准确率。数据集来源于Kaggle,项目环境为Windows10,Python3.7,PyTorch1.8.1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,我是阿光。

本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。

正在更新中~ ✨

🚨 我的项目环境:

  • 平台:Windows10
  • 语言环境:python3.7
  • 编译器:PyCharm
  • PyTorch版本:1.8.1

💥 项目专栏:【PyTorch深度学习项目实战100例】


一、基于ViT(Vision_Transformer)识别七龙珠超级赛亚人

近几年Transformer打响NLP领域,内部采用了自注意力机制模块大大提高了高级语义特征的提取能力,随后有人提出使用Transformer进行图像分类,来利用注意力机制学习不同图像子块的相互影响。

本项目使用ViT网络模型进行七龙珠人物识别,ViT是一个采用注意力机制的识别网络,本项目迭代了10个epoch左右,准确率达到了95.99%,可见效果之棒。

在这里插入图片描述

### 安装 vision_transformer_irpe 库 为了在 Python 中安装 `vision_transformer_irpe` 库,可以使用 pip 工具来完成这一过程。确保已安装最新版本的 pip 和其他依赖项。 通过命令行执行如下指令可安装该库: ```bash pip install git+https://github.com/Xi-Laboratory/IRPE.git@main#egg=vision_transformer_irpe ``` 此方法会从 GitHub 上直接克隆仓库并安装所需的包[^1]。 ### 使用 vision_transformer_irpe 库 一旦成功安装了 `vision_transformer_irpe`,就可以按照下面的方式引入模块并在项目里应用它了。 #### 导入必要的组件 首先,在脚本顶部导入所需的部分: ```python from functools import partial import torch.nn as nn from timm.models.vision_transformer import VisionTransformer, _cfg from timm.models.registry import register_model from .irpe import get_rpe_config, add_decomposed_rel_pos ``` 这里假设已经有一个基于 TIMM 的环境设置好了,并且能够访问到自定义的位置编码函数 `add_decomposed_rel_pos()` 以及配置工具 `get_rpe_config()`。 #### 创建模型实例 接着可以根据需求创建特定类型的视觉变换器模型: ```python rpe_config = get_rpe_config( method="product", # 可选参数取决于具体实现方式 ) @register_model def vit_base_patch16_224_irpe(pretrained=False, **kwargs): model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), rpe_config=rpe_config, **kwargs) return VisionTransformer(**model_kwargs) ``` 这段代码展示了如何注册一个新的 ViT 模型变体 (`vit_base_patch16_224_irpe`) 并为其指定改进版相对位置嵌入 (RPE)
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海洋 之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值