深度学习------tensorflow2.0,keras实现线性回归、逻辑回归和标准神经网络

本文通过Keras库详细介绍了如何使用深度学习实现线性回归、逻辑回归以及标准神经网络。涵盖了从一维到多变量的线性回归实例,二分类、三分类以及多分类的逻辑回归问题,以及在iris、digits、zoo和mnist数据集上的神经网络应用。在神经网络中,输入层和隐藏层采用ReLU激活,输出层使用softmax激活,损失函数根据任务类型选择不同的交叉熵或均方误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 线性回归

1.1 一维的数据(单变量)

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
x_data = [1, 2, 3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小飞龙程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值