YoloV8改进策略:BackBone改进|PKINet

本文介绍了PKINet,一种针对遥感旋转框检测的主干网络,其包含CAA和PKI模块,用于解决遥感图像中目标尺度变化和上下文环境的挑战。通过取代YoloV8的主干网络,PKINet在四个遥感检测基准上提高了性能。PKINet采用无空洞多尺度卷积和CAA模块,有效地提取不同尺度目标特征并捕获上下文信息。实验结果显示,PKINet在DOTA、HRSC2016和DIOR-R数据集上表现出色,且比传统方法更为轻量级。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

PKINet是面向遥感旋转框的主干,网络包含了CAA、PKI等模块,给我们改进卷积结构的模型带来了很多启发。本文,使用PKINet替代YoloV8的主干网络,实现涨点。PKINet是我在作者的模型基础上,重新修改了底层的模块,方便大家轻松移植到YoloV8上。

论文:《Poly Kernel Inception Network在遥感检测中的应用》

https://export.arxiv.org/pdf/2403.06258
遥感图像(RSI)中的目标检测经常面临一些日益严重的挑战,包括目标尺度的巨大变化和多样的上下文环境。先前的方法试图通过扩大骨干网络的空间感受野来解决这些挑战,要么通过大核卷积,要么通过空洞卷积。然而,前者通常会引入大量的背景噪声,而后者则可能生成过于稀疏的特征表示。在本文中,我们引入了Poly Kernel Inception Network(PKINet)来处理上述挑战。PKINet采用无空洞的多尺度卷积核来提取不同尺度的目标特征并捕获局部上下文。此外,我们还并行引入了一个Context Anchor Attention(CAA)模块来捕获长距离上下文信息。这两个组件共同作用,提高了PKINet在四个具有挑战性的遥感检测基准上的性能,即DOTA-v1.0、DOTA-v1.5、HRSC2016和DIOR-R。
在这里插入图片描述

### DIOR-R 和 YOLO 的技术背景 DIOR-R 是一种针对复杂场景下的目标检测算法,特别适用于遥感图像领域。它通过改进传统的目标检测框架来适应大规模、多尺度的物体分布特性[^3]。YOLO (You Only Look Once) 是一种实时目标检测算法,以其高效性和速度著称,在多个应用场景中表现出色。 #### PKINet 与 DIOR-R 的关联 PKINet 提供了一种有效的策略,能够捕捉不同尺度上的密集纹理特征以及长距离上下文信息。这种设计思路可以被迁移到 DIOR-R 中,从而增强其对遥感图像中小目标和复杂背景的理解能力。 #### YOLO 的核心特点 YOLO 将整个输入图像划分为网格单元格,并预测每个单元格内的边界框及其对应的类别概率。相比其他两阶段的方法(如 Faster R-CNN),YOLO 更加简洁快速,适合需要高性能计算的应用场合[^4]。 --- ### 实现 DIOR-R 和 YOLO 技术的技术路径 以下是基于现有研究和技术文档总结出来的实现方案: #### 数据预处理 对于遥感图像数据集,通常需要执行以下操作: - **裁剪与缩放**:将高分辨率遥感图像分割为较小的子图以便于训练。 - **标注转换**:如果使用 COCO 或 Pascal VOC 格式的标签文件,则需将其适配到所选框架的要求下。 ```python import cv2 from PIL import Image def preprocess_image(image_path, target_size=(416, 416)): image = cv2.imread(image_path) resized_image = cv2.resize(image, target_size) normalized_image = resized_image / 255.0 # 归一化至 [0, 1] return normalized_image ``` #### 模型架构调整 结合 DIOR-R 和 YOLOv5 的优势,可以通过如下方式构建自定义模型: - 增强骨干网络:替换默认的 CSPDarknet53 骨干网路为更深更强力的 ResNet 或 EfficientNet 变体。 - 引入注意力机制:借鉴 PKINet 思想加入上下文锚定模块以提升小目标识别精度。 ```python import torch.nn as nn class CustomBackbone(nn.Module): def __init__(self): super(CustomBackbone, self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=2), nn.ReLU(), ... ) def forward(self, x): return self.conv_layers(x) model.backbone = CustomBackbone() ``` #### 训练流程优化 为了提高泛化能力和收敛效率,建议采取以下措施: - 动态调整学习率:采用余弦退火调度器或者阶梯式下降法。 - 数据增广手段:随机翻转、旋转和平移等变换增加样本多样性。 ```python optimizer = torch.optim.Adam(model.parameters(), lr=0.001) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs) for epoch in range(num_epochs): model.train() for images, targets in dataloader: outputs = model(images) loss = compute_loss(outputs, targets) optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() ``` --- ### 结果评估与部署 完成训练之后,可通过 mAP@IoU 等指标衡量模型表现;随后导出 ONNX/PYTorch Script 文件用于实际环境中的推理服务。 ```bash torch.onnx.export(model, dummy_input, "output_model.onnx", opset_version=11) ``` ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值