JavaScript 算法 -- 动态规划

本文探讨了动态规划在解决复杂问题如爬楼梯和打家劫舍中的应用,对比了其与分而治之的区别,并通过实例演示了动态规划的子问题重叠特性。深入理解动态规划如何通过递归求解子问题来优化原问题解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态规划

动态规划是算法设计中的一种方法。
它将一个问题分解为相互重叠的子问题,通过反复求解子问题,来解决原问题。

动态规划与分而治之的区别

  • 动态规划的子问题是相互重叠的;
  • 分而治之的子问题是相互独立的;

例题一:爬楼梯

在这里插入图片描述

	var climbStairs = function(n) {
	    if(n < 2) return 1;
	    const res=[1, 1];
	    for(var i = 2;i<=n;i++){
	        res[i] = res[i-1] + res[i-2];
	    }
	    return res[n];
	};
	var climbStairs = function(n) {
	    if(n < 2) return 1;
	    var res1 = 1;
	    var res2 = 1;
	    for(var i = 2;i<=n;i++){
	        var tmp = res1;
	        res1 = res2;
	        res2 = tmp + res2;
	    }
	    return res2;
	};

例题二:打家劫舍

在这里插入图片描述

	var rob = function(nums) {
	    if(nums.length == 0) return 0;
	    var res = [0, nums[0]];
	    for(var i=2;i<=nums.length;i++){
	        res[i] = Math.max(res[i-2] + nums[i-1], res[i-1]);
	    }
	    return res[nums.length];
	};
	var rob = function(nums) {
	    if(nums.length == 0) return 0;
	    var res0 = 0;
	    var res1 = nums[0];
	    for(var i=2;i<=nums.length;i++){
	        var res2 = Math.max(res0 + nums[i-1], res1);
	        res0 = res1;
	        res1 = res2;
	    }
	    return res1;
	};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱划水de鲸鱼哥~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值