AI 大模型(LLM)无疑是当下最热门的技术话题,各种模型和应用。但喧嚣之下,要真正理解这项技术,避免成为被技术浪潮裹挟的“数字浮萍”,阅读和思考仍然是必要的路径。
与其追逐瞬息万变的应用,不如沉下心来,看看构成这一切的基础。下面推荐四本书,它们侧重点各不相同,但都能帮助你更深入地理解 AI 大模型,无论你是想动手实践,还是想了解核心原理和应用。
1. 《从零构建大模型》 - Sebastian Raschka
如果你想知道 LLM 的“引擎盖”下面到底是什么,塞巴斯蒂安·拉施卡的这本《从零构建大模型》是个不错的选择。这本书最大的特点就是“从零开始”,它假设你只有 Python 基础,然后一步步带你构建一个类似 GPT-2 的模型。
书中涵盖了数据处理、分词、注意力机制、Transformer 架构实现、预训练、指令微调(包括 RLHF 的概念)等关键环节。作者是大模型领域的知名科普作家,擅长深入浅出地解释大模型的各种技术原理,也是知名 GitHub 项目 LLMs-from-scratch 的创建者,在“动手”这件事上很有经验。
读这本书,最大的收获不是得到一个多强的模型,而是通过实践,真正理解模型工作的内部机制和各个组件的作用。配套的 GitHub 代码和视频也很有价值。
2. 《大模型技术30讲》 - Sebastian Raschka
同一位作者,拉施卡,还有一本《大模型技术30讲》。这本书换了个角度,不再是完整构建一个模型,而是采用问答的形式,串起了当前机器学习和 AI 领域的 30 个重要问题。
内容不局限于 LLM,还包括神经网络、计算机视觉、生产部署、模型评估等更广泛的主题,比如自监督学习、小样本学习、多 GPU 训练模式、Transformer 为何成功、如何评测生成模型等等。
如果你想快速了解 AI 相关的一些关键概念和最新进展,查漏补缺,这本书提供了一种高效的方式。它的覆盖面广,可以帮助你建立更全面的知识图谱。
3. 《Transformer自然语言处理实战》 - Lewis Tunstall, Leandro von Werra, Thomas Wolf
理论和基础固然重要,但最终还是要落地应用。这本《Transformer自然语言处理实战》就是一本关注实践的书,尤其侧重于 Hugging Face 生态。
作者来自 Hugging Face,他们详细介绍了如何使用 Transformers 库来解决实际的 NLP 问题,比如文本分类、命名实体识别、文本生成、摘要、问答系统等。书中不仅讲解了 Transformer 的架构(编码器、解码器、注意力),还涉及了模型微调、知识蒸馏、量化、ONNX 推理优化等实用技术,甚至包括了零样本和少样本学习,以及如何从头训练一个模型。
对于想利用现有工具和模型快速开发 AI 应用的开发者来说,这本书非常实用。
4. 《深度学习入门》 - 斋藤康毅
有时候,我们需要回到最开始的地方。《深度学习入门》是深度学习领域的经典入门书。它的核心理念也是“从零开始”,但比《从零构建大模型》更基础。
这本书的目标是尽量不依赖高级库(主要用 Python 和 NumPy),带领读者手动实现神经网络的基本组件,包括感知机、激活函数、损失函数、梯度下降、误差反向传播,并最终构建出卷积神经网络(CNN)。
虽然它不直接讲 Transformer,但它把神经网络和深度学习最核心、最底层的原理讲得非常透彻。你可以跟着作者,从零实现一个手写数字识别网络,逐步理解深度学习的底层逻辑。只有把基础打牢,才能真正理解大模型的“深”在哪里。
5、结语
技术发展很快,新模型、新应用让人眼花缭乱。但构建这些模型的基本原理、核心思想,以及工程实践中的挑战,变化相对没有那么快。花点时间,读几本好书,深入理解一些基础的东西,总归是更有价值的投入。希望这份书单对你有帮助。
6、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。