在AI技术快速迭代的当下,一个高效、可靠的AI Agent已成为企业降本增效、个人提升生产力的核心工具。完整的AI Agent体系通常由五大核心组件构成,它们如同精密仪器的齿轮,环环相扣支撑起智能交互与任务执行:
- 大语言模型(LLM):作为AI Agent的“大脑”,提供基础的语义理解与生成能力,目前主流模型在核心计算能力上已逐渐标准化,差异更多体现在场景适配性上;
- 工具(Tools):相当于AI Agent的“手脚”,通过MCP、API等协议实现与外部系统的对接,让Agent能调用搜索、计算、爬虫等功能,拓展能力边界;
- 知识库(RAG):是AI Agent的“专业资料库”,不仅能为回答提供权威依据、减少模型“幻觉”,更是企业私有知识、行业专属信息的载体,直接决定Agent的知识深度;
- 工作流(Workflow):好比Agent的“行动蓝图”,定义了任务执行的步骤、逻辑与优先级,是复杂任务自动化的核心骨架,影响整体处理效率;
- 提示词(Prompt):则是“指挥棒”,直接决定Agent输出的精度与贴合度,需要结合具体业务场景进行精细化设计,才能让Agent精准理解需求。
在实际落地中,高质量知识库的构建与维护、灵活可靠的工作流编排、贴合业务的Prompt设计,是大多数人搭建AI Agent时面临的三大核心痛点。本文将从这三大痛点出发,手把手教你从零构建AI Agent的关键模块。
一、知识库:AI Agent的“专业知识库”搭建指南
知识库(RAG,检索增强生成)是AI Agent摆脱“通用知识局限”、具备行业或企业专属能力的关键。一套完整的知识库搭建流程,需经历“知识收集-整理-存储-检索-排序-更新”六个环节,每个环节都有其核心要点与实用技巧。
1. 知识收集:从“原料”到“可用数据”的转化
知识收集的核心是将分散、非结构化的信息,转化为系统可处理的文本数据。我们日常接触的PDF报告、Word文档、PPT演示稿、甚至网页内容、会议录音转写稿,都属于“知识原料”。
以眼镜行业为例,若你手中有一份《2024年中国眼镜行业消费趋势报告》PDF,无需手动复制粘贴,可借助minerU、Adobe Acrobat的OCR功能,或开源工具LangChain的FileLoader组件,自动提取PDF中的文字、表格甚至图片中的文本信息,快速将“纸质化”或“图片化”的内容转化为纯文本数据。对于会议录音,可先用讯飞听见、Whisper等工具转写为文字,再进行后续处理,大幅降低人工成本。
2. 知识整理:给“知识碎片”贴好“标签”
知识整理是决定后续检索效率的关键,核心是“拆分+标注”——将长文本拆分为适合检索的“知识块”,并为每个知识块添加精准的元数据标签。
- 拆分策略:需根据知识类型灵活选择。对于结构化较强的文档(如行业报告、技术手册),可按“章节-小节”逻辑拆分;对于主题分散的内容(如客户咨询记录),可按“主题”拆分(如“产品售后”“价格咨询”);若文档结构混乱,也可按固定字数拆分(通常建议每块200-500字,兼顾语义完整性与检索速度)。
- 标签标注:标签需覆盖“检索维度”,常见标签包括:文档类型(如“行业报告”“技术手册”)、时间(如“2024Q1”“2023年度”)、关键词(如“眼镜行业”“消费趋势”“青少年近视防控”)、来源(如“某咨询公司”“内部研发部”)。例如,一份关于“眼镜专利纠纷”的文档片段,可标注标签:
精准的标签能让后续检索时,快速定位到目标知识块,避免“大海捞针”。标题:海外眼镜品牌知识产权纠纷应对策略 标签:专利纠纷、海外市场、应对方案、2024年
3. 知识存储:用“混合架构”兼顾“理解”与“关联”
知识存储并非简单“存文本”,而是要让系统能“理解”知识含义、“关联”知识间的逻辑。目前主流的存储方式分为三类,对应不同的检索需求,实际应用中建议采用“混合存储架构”,兼顾语义理解与关系关联。
存储方式 | 核心原理 | 适用场景 | 示例 |
---|---|---|---|
语义存储(向量) | 将文本转化为向量,通过向量相似度判断语义相关性 | 需理解“模糊需求”,如“眼镜行业未来发展” | 问“眼镜行业趋势”,能匹配“眼镜消费新场景”相关内容 |
关键词存储 | 建立关键词索引,通过关键词匹配定位内容 | 需精准查找特定信息,如“2024眼镜专利数量” | 问“2024眼镜专利”,直接定位到包含该关键词的章节 |
关联存储(图) | 以“节点-边”形式存储实体与关系,构建知识图谱 | 需挖掘知识间的隐性关联,如“专利纠纷与应对方案” | 问“专利纠纷怎么办”,能关联到“律师资源”“规避策略” |
混合架构实战:推荐采用“向量数据库(Milvus)+图数据库(Neo4j)”组合,具体实施分三步:
- 数据模型设计:用Neo4j构建“知识图谱”,存储实体(如“眼镜品牌A”“专利类型B”“应对方案C”)与关系(如“品牌A面临专利类型B纠纷,需用方案C解决”);用Milvus存储文本向量,作为“语义检索层”。
- 向量化处理:新内容进入时,先预处理(分词、去停用词),再用BERT、Sentence-BERT等模型转化为向量,存入Milvus;同时提取实体与关系,存入Neo4j,确保两边数据一一对应。
- 索引优化:Milvus用HNSW算法建立向量索引,提升相似性检索速度;Neo4j为常用查询字段(如“品牌名”“专利类型”)建立索引,避免全库遍历。
4. 知识检索:用“组合拳”解决“单一检索局限”
好的检索系统,能让AI Agent快速找到“最有用”的知识。单一检索方式往往存在局限:语义检索可能漏掉隐性关联,图检索难以处理“新问题”,因此需用“语义检索+图检索+辅助手段”的组合策略。
- 语义检索:先通过Milvus的向量相似度,找到与问题语义最接近的知识块。例如问“怎么处理客户投诉”,能匹配到“客户投诉处理指南”“售后沟通技巧”等内容,无需严格匹配“投诉”二字。
- 图检索:再通过Neo4j的知识图谱,挖掘隐性关联。例如问“客户投诉处理”,能关联到“投诉常见原因”“补偿政策”“客服培训资料”,让回答更全面。
- 辅助优化手段:
- 动态权重调整:根据问题类型调整检索权重。例如问“诺贝尔奖得主名单”(关键词强相关),将关键词检索权重调至0.8;问“AI未来趋势”(语义相关),将语义检索权重调至0.9。
- 图嵌入向量预计算:为图数据库中的节点生成向量,存入Milvus。例如为“投诉处理”节点生成向量,找相似问题时,直接通过向量匹配定位节点,避免图遍历耗时。
5. 知识排序与更新:让知识库“常更常新”
- 排序策略:确保“有用的知识排在前面”。先通过BM25等算法进行“粗排”,筛选出Top20候选结果;再用交叉编码器(如BERT-for-Reranking)进行“精排”,结合语义相似度、时效性、权威性调整排序;最后根据业务规则(如过滤过期信息、拦截敏感内容)进行“规则干预”,确保输出合规。
- 更新机制:知识库需“动态保鲜”,避免信息过时。
- 自动触发更新:监控知识来源(如企业文档库、行业网站),一旦有新内容上传或旧内容修改,自动启动“收集-整理-存储”流程。
- 增量更新:仅处理变化的内容,例如新增一份“2024Q2眼镜报告”,无需重新处理所有历史报告,只更新新增部分的向量与图谱。
- 版本管理:同一内容保留多个版本,标注生效时间、失效时间、状态(如“在用”“废弃”),查询时自动过滤过期内容。
此外,微软近期推出的GraphRag技术栈,通过LLM全程参与知识库构建,简化了流程,但目前仍存在“过度依赖模型、缺乏可控性”的问题,更适合轻量化场景,企业级应用建议优先选择“向量+图”的混合架构。
二、工作流:AI Agent的“行动蓝图”设计与实战
工作流是AI Agent的“任务执行引擎”,定义了“先做什么、再做什么、遇到问题怎么办”,是复杂任务自动化的核心。没有工作流的Agent,可能出现“先调用工具再查知识库”的低效行为;而好的工作流,能让Agent像“专业团队”一样,按流程高效完成任务。
1. 工作流的核心逻辑:循环-反思-迭代
理想的工作流并非“线性步骤”,而是“循环-反思-迭代”的动态过程:用户提出需求→Agent判断需调用工具/查知识库→执行后评估结果是否满足需求→若不满足,调整策略(如修改搜索词、换工具)→重复直至任务完成。
以“HR基于LinkedIn资料招聘”为例,完整工作流如下:
- 需求输入:HR上传Excel表,包含候选人姓名、邮箱,以及需抓取的字段(如工作经历、核心技能)。
- 生成精准查询词:用Prompt指导LLM生成LinkedIn搜索词,避免模糊匹配。例如根据“张三,目标岗位Java架构师”,生成“张三 Java架构师 北京”,而非单纯“张三”。
- 自动化爬取数据:调用Playwright、Selenium等爬虫工具,根据搜索词定位候选人LinkedIn主页,自动过滤同名用户,提取工作经历、技能、项目经验等指定字段。
- 数据整理与总结:调用LLM将碎片化数据转化为结构化总结。例如将“2020-2023年在A公司做Java开发,2023至今在B公司做架构师”,总结为“5年Java开发经验,1年架构师经历,擅长分布式系统设计”。
- 生成个性化消息并发送:根据总结内容,填充预设消息模板,再通过LinkedIn API或模拟点击工具自动发送。例如:
模板:Hi [姓名],注意到您有[X年] [技能]经验,曾负责[项目],我司正在招聘[岗位],期待与您沟通! 实际发送:Hi 张三,注意到您有5年Java开发经验,1年架构师经历,擅长分布式系统设计,我司正在招聘Java架构师,期待与您沟通!
- 异常处理:若爬虫未找到候选人信息,Agent自动调整搜索词(如“张三 Java 前A公司”);若消息发送失败,自动重试或记录异常,反馈给HR。
2. 商业化工作流工具推荐:Coze的优势
目前市面上有不少工作流工具,其中Coze是较为成熟的商业化产品,核心优势在于:
- 低代码可视化:无需复杂编程,通过拖拽组件(如“调用工具”“条件判断”“循环”)即可搭建工作流,新手也能快速上手。
- 丰富的工具生态:内置搜索、爬虫、API调用等常用工具,支持接入企业私有工具,无需重复开发。
- 智能容错机制:支持设置“异常分支”,例如工具调用失败时,自动切换备用工具,或暂停流程等待人工干预,减少任务中断。
后续将专门撰写文章,详细解析Coze工作流的原理与实战案例,帮助大家快速搭建符合自身需求的工作流。
三、Prompt工程:AI Agent的“指挥棒”设计技巧
Prompt工程是让AI Agent“听懂需求、做对事”的关键,相当于为AI定制“思维操作系统”。很多人觉得“写Prompt很简单”,但实际效果往往不理想——核心问题在于,没有把AI当成“需要明确指令的工具”,而是当成“能理解隐含需求的人”。
1. 系统Prompt:给AI“明确身份与上下文”
系统Prompt是AI的“基础设定”,需包含“角色定位”与“上下文信息”,两者缺一不可。
-
角色定位:拒绝“宽泛身份”,聚焦“具体任务”
错误示例:“你是资深电商运营专家,擅长写产品文案”——AI可能会讲“电商文案写作技巧”,而非直接生成文案。
正确示例:“你是电商眼镜产品文案生成器,仅输出产品详情页文案,风格简洁,突出产品功能与使用场景,不添加额外解释”——明确“任务边界”与“输出要求”,AI才能精准执行。 -
上下文:给AI“必要背景”,避免“常识缺失”
AI没有“默认常识”,需主动提供关键信息。例如智能客服场景,若只写“你是智能客服,回答用户问题”,用户问“为什么我的订单还没发货”,AI可能答“请耐心等待”;若补充上下文:你是智能客服,用户订单信息如下:订单号12345,已支付,物流状态为“已揽收,待中转”,当前时间2024年5月20日。用户问:“为什么我的订单还没发货?”
AI就能准确回答:“您的订单已发货,当前物流状态为‘已揽收,待中转’,预计2天内送达,请您留意物流更新。”
2. Examples:让AI“照着做”,而非“猜着做”
Examples(示例)是让AI快速掌握“规则”的关键,但不是“越多越好”,而是“精准+全面”。核心原则是:通过示例让AI“学会规律”,而非“记住例子”。
- 示例设计技巧:
- 质量优先:只放“正确示例”,不包含“模糊或错误案例”,避免AI混淆规则。
- 覆盖场景:包含“正常场景”“边缘场景”,例如写眼镜产品文案,需覆盖“近视眼镜”“太阳镜”“儿童眼镜”等不同品类,避免AI只擅长某一类。
- 直接给结果,不写过程:若需AI输出结构化数据(如JSON),示例中只放最终JSON,不写“如何生成JSON”的步骤。例如:
// 正确示例: 用户需求:“生成儿童近视眼镜文案” 输出:{ "标题": "儿童防蓝光近视眼镜,轻盈舒适不压鼻", "核心功能": ["防蓝光", "轻盈镜架", "可调节鼻托"], "使用场景": "日常学习、上网课、户外玩耍" }
3. Output Format:让AI“按格式交作业”
很多人遇到“让AI输出JSON,结果AI写了一段话”的问题,核心是没有“强约束”输出格式。需通过“角色定位+格式示例+反复强调”三重约束,确保AI按要求输出。
-
实战案例:要求AI输出用户订单的JSON数据,Prompt可设计为:
你是订单数据提取器,仅输出JSON格式数据,不添加任何文字解释。JSON需包含字段:订单号(orderId)、用户姓名(userName)、商品名称(productName)、支付金额(payAmount)。 示例: 用户输入:“我的订单是12345,买了儿童近视眼镜,花了399元,我叫李四” 输出:{ "orderId": "12345", "userName": "李四", "productName": "儿童近视眼镜", "payAmount": "399元" } 注意:必须输出纯JSON,不要任何其他文字!
-
常见误区:
- 只说“输出JSON”,不给示例:AI可能理解偏差,输出非标准JSON。
- 示例中包含多余文字:如示例里写“步骤1:提取订单号…步骤2:提取姓名…”,AI会模仿“步骤描述”,而非输出纯JSON。
总之,Prompt工程的核心是“把模糊需求变明确指令”——明确AI的角色、任务边界、输出格式,再用精准示例让AI“学会规律”,才能让AI Agent真正“听话、好用”。
四、如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
五、为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
六、大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
大模型入门到实战全套学习大礼包
1、大模型系统化学习路线
作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!
2、大模型学习书籍&文档
学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
3、AI大模型最新行业报告
2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
4、大模型项目实战&配套源码
学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。
5、大模型大厂面试真题
面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
适用人群
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。