matlab2020a+cplex+yalmip安装教程,win10

该文详细介绍了如何分两步在MATLAB中安装CPLEX和YALMIP。首先,从IBM官网或百度网盘下载CPLEX12.0,并将其matlab文件夹添加到MATLAB路径。然后,下载YALMIPR20200930,将其放到MATLAB的toolbox文件夹下,并添加到路径。最后,通过运行yalmiptest命令来验证安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分两步:首先安装cplex,在安装yalmip,最后测试是否安装成功

1.cplex安装

(1)下载cplex软件:官网ILOG CPLEX Optimization Studio - 中国 | IBM

或者通过百度网盘获取,注意我的版本是cplex12.0

链接:https://pan.baidu.com/s/1RuFPX2kutTVRr1ibK5lhUw 
提取码:vB2G 

(2)将安装包添加到matlab设置路径中。在matlab菜单栏中找到设置路径(set path),选择“添加并包含子文件夹”,将cplex安装路径的cplex\matlab这一个文件夹添加进去,如图所示:

 2.yalmip安装

(1)下载yalmip软件:官网Releases · yalmip/YALMIP (github.com)

或者通过百度网盘获取,注意我的版本是YALMIP-R20200930

链接:https://pan.baidu.com/s/1Q6XAmtzstY00p0yiRo6TYw 
提取码:94T7 

(2)将下载后的安装包剪切到到 matlab 程序安装路径中的 toolbox 文件夹下

(3)将安装包添加到matlab设置路径中。在matlab菜单栏中找到设置路径(set path),选择“添加并包含子文件夹”,将yalmip这一个文件夹添加进去,如图所示:

 3.至此安装完成。

在matlab命令行输入“yalmiptest”指令,判断是否安装成功。若出现以下界面,则说明安装成功。

 

### 综合能源系统优化的 MATLABCPLEXYALMIP 实现 综合能源系统的优化通常涉及多个目标函数和约束条件,例如最小化成本、减少碳排放以及满足能量平衡需求。MATLAB 是一种强大的工具,而 CPLEXYALMIP 则提供了高效的求解器支持线性和非线性规划问题。 以下是基于 MATLAB 的综合能源系统优化的一个简单示例代码,其中利用了 CPLEXYALMIP 工具箱来解决一个典型的多目标优化问题: #### 示例代码 ```matlab % 加载 YALMIP 并设置求解器为 CPLEX if ~exist('yalmip', 'file') error('YALMIP not found! Please install it.'); end clear sdpvar; clc; % 定义决策变量 P_elec = sdpvar(1); % 电力生产量 (MW) Q_heat = sdpvar(1); % 热力生产量 (MW) % 参数定义 C_elec = 50; % 单位电能生产成本 ($/MW) C_heat = 30; % 单位热能生产成本 ($/MW) D_elec = 80; % 电力需求 (MW) D_heat = 60; % 热力需求 (MW) % 目标函数:总成本最小化 Objective = C_elec * P_elec + C_heat * Q_heat; % 约束条件 Constraints = [ P_elec >= 0, % 电力生产量非负 Q_heat >= 0, % 热力生产量非负 P_elec == D_elec, % 满足电力需求 Q_heat == D_heat]; % 满足热力需求 % 设置选项并调用求解器 options = sdpsettings('solver','cplex'); optimize(Constraints,Objective,options); % 输出结果 disp(['最优电力生产量: ', num2str(value(P_elec)), ' MW']); disp(['最优热力生产量: ', num2str(value(Q_heat)), ' MW']); disp(['最低总成本: $', num2str(double(Objective))]); ``` 此代码展示了如何通过 YALMIP 将优化模型传递给 CPLEX 进行求解[^1]。它假设了一个简单的场景,即仅需满足固定的电力和热力需求,并试图找到使总运行成本最小化的解决方案。 #### 关键点说明 - **YALMIP** 提供了一种高级建模语言,允许用户轻松描述复杂的数学优化问题。 - **CPLEX** 被指定作为底层求解器,因为它能够高效处理大规模混合整数线性规划 (MILP) 或二次规划 (QP) 问题。 - 上述例子中的 `sdpvar` 函数用于声明符号变量;`optimize` 函数则负责执行实际的优化过程[^2]。 #### 扩展功能 对于更复杂的综合能源系统(如考虑储能设备、可再生能源接入等),可以进一步扩展该框架。例如引入时间序列数据以模拟动态调度行为或者增加额外的目标维度像环境影响评估。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值