将中频信号作为输入结合RF采样得到的I/Q信号进行cordic旋转的物理意义解释

您描述的操作是数字接收机中的一种高效实现方案,其核心目的是 利用CORDIC算法直接完成数字下变频(DDC)中的复数混频(频率搬移)和相位旋转功能。将DDC的频率控制字配置作为CORDIC旋转的初始角度是整个设计的关键。

以下是这种操作的目的、作用和工作原理的详细解释:

  1. 核心目的:实现高效、精确的数字下变频(DDC)

    • DDC的任务是将射频(RF)或中频(IF)的数字化信号(I/Q数据)的中心频率搬移到零频(基带),以便进行后续的低通滤波和低速率处理(如解调)。
    • 传统DDC使用数字混频器(乘法器)将输入I/Q信号与数字本振(NCO生成的正弦/余弦)相乘来实现频谱搬移。
    • 本方案的精髓在于:它用CORDIC算法替代了传统的复数乘法器来实现混频和相位旋转。
  2. CORDIC 的角色:复数旋转器

    • CORDIC 算法最擅长的就是计算向量旋转(或相位旋转)。
    • 将一个复数 I_in + jQ_in 乘以一个单位复数 e^(jθ) = cosθ + jsinθ 的效果,等价于 将原始复数向量 (I_in, Q_in) 在复平面上旋转角度 θ
    • 复数乘法 (I_in + jQ_in) * (cosθ + jsinθ) 等价于将向量 (I_in, Q_in) 旋转角度 θ。

因此,CORDIC 可以直接用来实现复数混频器,替代传统的乘法器结构。输入是 (I_in, Q_in),旋转角度 θ 由 NCO 提供(即相位累加器的当前输出值 Φ),输出就是下变频后的基带信号 (I_out, Q_out)。
* 这正是混频所需的操作! 如果 θ 是随时间线性递增的角度(θ[n] = 2π * f_lo * n * Ts,其中 f_lo 是目标下变频的本振频率,Ts 是采样周期),那么CORDIC的连续旋转操作就实现了输入信号频谱在频率轴上平移 -f_lo 的效果。

  1. 频率控制字作为初始角度的意义:驱动相位旋转

    • 频率控制字(FTW) 是控制数字下变频目标频率(本振频率 f_lo)的关键参数。它决定了NCO(数字控制振荡器)相位累加器的步进步长。
    • 相位累加器 是NCO的核心。每个时钟周期,它在其当前相位值上累加一次FTW: Φ[n+1] = (Φ[n] + FTW) mod 2^N
    • 相位累加器的输出 Φ[n] 就是当前时刻 n 的本振相位值(以数字量表示,范围 0)。
    • Φ[n] 直接作为CORDIC旋转器的目标旋转角度 θ 输入: 这就是您描述的“配置输入的数字下变频(DDC)的频率控制字作为cordic旋转的初始角度”的本质。更准确地说,是将当前时刻NCO相位累加器的输出值 Φ[n] 作为CORDIC此刻要旋转的角度 θ。频率控制字(FTW)是用来不断更新 Φ[n] 的,而 Φ[n] 本身才是当前时刻的相位角度。
  2. 14次CORDIC迭代的作用:逼近目标旋转角度

    • CORDIC算法通过一系列预先定义的、角度不断减半的微小旋转(arctan(1), arctan(1/2), arctan(1/4), ..., arctan(1/8192))来逼近任意目标旋转角度 θ
    • 每次迭代完成一次简单的移位和加法操作。
    • 14次迭代 提供了非常高的旋转角度精度(通常能达到优于0.01°的精度)。迭代次数越多,精度越高,但计算延迟也越大。14次是精度和延迟的一个常用平衡点。
  3. CORDIC的输出:下变频后的基带I/Q信号

    • 输入: RF/IF 采样得到的原始复信号 (I_in[n], Q_in[n])
    • 操作: CORDIC 使用当前时刻NCO计算出的相位 θ[n] = Φ[n] 作为旋转目标,对这个输入向量进行(14次迭代逼近的)旋转。
    • 输出: 旋转后的复信号 (I_out[n], Q_out[n])
    • 输出的物理意义:
      • 如果 θ[n] 的增量速率精确对应期望下变频的频率 f_lo,那么 (I_out[n], Q_out[n]) 就是输入信号频谱被搬移了 -f_lo 后的结果。换句话说,原本中心在 f_c 的信号,其中心频率被搬移到了 f_c - f_lo。目标通常是 f_c - f_lo = 0 (零中频)。
      • (I_out[n], Q_out[n]) 就是数字下变频后得到的基带(或低中频)I/Q信号

总结目的与作用:

  1. 实现核心DDC功能: 直接利用CORDIC的向量旋转能力完成复数混频(频率搬移),是DDC的核心步骤。
  2. 高效性: CORDIC仅用移位器和加法器实现复杂的三角函数计算和乘法操作,节省了大量硬件资源(尤其是乘法器),特别适合FPGA/ASIC实现。
  3. 高精度: 14次迭代提供了足够高的旋转角度精度,保证了下变频的准确性和信号保真度(低失真、低相位噪声)。
  4. 相位同步: 将NCO实时生成的相位 Φ[n] 直接作为CORDIC的角度输入,确保了混频本振的相位与输入信号在时间上严格同步,避免了因处理延迟造成的相位误差(这是实现高性能正交下变频的关键)。
  5. 简化架构: 将NCO(相位生成)和混频器(复数乘法/旋转)的功能通过CORDIC算法优雅地结合在一起,简化了DDC的硬件结构。
  6. 输出结果: CORDIC的输出 (I_out, Q_out) 就是经过数字下变频(频率搬移到基带附近)后的基带I/Q信号对。这个信号可以直接进行低通滤波(滤除搬移后产生的高频镜像分量和带外噪声),然后进行抽取(降低采样率)和后续的解调等基带处理。

简而言之: 这种配置利用CORDIC算法,将RF输入的I/Q数据,根据由DDC频率控制字驱动的、实时生成的NCO相位,进行高精度复数旋转(混频),其输出就是中心频率被搬移到零频(或低中频)的基带I/Q信号。这是一种资源高效、精度高且同步性好的DDC实现方案。

以下讲解以下:
将一个复数 I_in + jQ_in 乘以一个单位复数 e^(jθ) = cosθ + jsinθ 的效果,等价于 将原始复数向量 (I_in, Q_in) 在复平面上旋转角度 θ; 这句话的原理是什么

将复数在这里插入图片描述
乘以单位复数在这里插入图片描述
等价于在复平面上将向量 在这里插入图片描述
旋转角度 theta,其数学原理源于复数的极坐标表示和欧拉公式。以下是详细证明:


1. 复数的极坐标表示

在这里插入图片描述

2. 复数乘法的几何意义

在这里插入图片描述


3. 直角坐标下的代数证明

在这里插入图片描述

4. 几何示意图

                  ^ Q
                  |         z_out = (I_out, Q_out)
                  |        /
                  |       / 
                  |      /    
                  |     /     : rotated by θ
                  |    /      
                  |   /       
                  |  /        
                  | / φ+θ     
       z_in       |/         
  (I_in, Q_in)   / ------> I
                / | φ  
               /  |  
              /   |  
             /    | 

在这里插入图片描述

%% 参数设置 clear all; close all; clc; Fs = 5e9; % 采样率 5 GHz fc = 1e9; % 载波频率 1 GHz bw = 5e6; % 信号带宽 5 MHz duration = 20e-6; % 信号持续时间 20 μs t = 0:1/Fs:duration-1/Fs; %% 生成QPSK调制信号 fprintf('生成QPSK调制信号...\n'); symbol_rate = bw/2; % 符号率 2.5 MHz sps = floor(Fs/symbol_rate); % 每符号采样点数 num_symbols = ceil(length(t)/sps); data = randi([0 3], 1, num_symbols); % QPSK数据 modulated = pskmod(data, 4, pi/4); % QPSK调制 % 升余弦滤波 rolloff = 0.35; filt = rcosdesign(rolloff, 6, sps); baseband = upfirdn(modulated, filt, sps, 1); baseband = baseband(1:length(t)); %% 上变频 fprintf('上变频到RF...\n'); carrier = exp(1i*2*pi*fc*t); rf_signal = real(baseband .* carrier); %% 添加噪声 fprintf('添加噪声...\n'); noise_power = 0.01 * var(rf_signal); rf_signal = rf_signal + sqrt(noise_power)*randn(size(rf_signal)); %% 定点量化 (16位有符号) fprintf('定点量化...\n'); nbits = 16; max_val = 2^(nbits-1)-1; rf_signal_normalized = rf_signal / max(abs(rf_signal)); rf_fixed = round(rf_signal_normalized * max_val); rf_fixed(rf_fixed > max_val) = max_val; rf_fixed(rf_fixed < -max_val) = -max_val; %% 重组为16路并行数据 fprintf('重组为16路并行数据...\n'); num_samples = length(rf_fixed); if mod(num_samples, 16) ~= 0 rf_fixed = [rf_fixed, zeros(1, 16 - mod(num_samples, 16))]; num_samples = length(rf_fixed); end parallel_data = reshape(rf_fixed, 16, []); num_blocks = size(parallel_data, 2); %% ===================== 并行混频模块实现 ===================== fprintf('\n===== 开始并行混频处理 =====\n'); tic; % NCO参数计算 nco_phase_step = 2*pi*fc/(Fs/16); % 每路相位增量 nco_initial_phase = 2*pi*fc*(0:15)/Fs; % 16路初始相位 % 初始化混频输出 mixed_data = complex(zeros(16, num_blocks)); % 复数类型 % 并行混频处理 for block_idx = 1:num_blocks samples = parallel_data(:, block_idx); % 计算每个通道的NCO相位 time_offset = (block_idx-1)*16; % 时间偏移 current_phase = nco_initial_phase + time_offset*nco_phase_step; % 生成NCO载波 nco_carrier = exp(-1i * current_phase); % 混频处理 mixed_data(:, block_idx) = double(samples) .* nco_carrier.'; end % 重组为串行数据 mixed_serial = reshape(mixed_data, 1, []); mixer_time = toc; fprintf('并行混频处理完成! 耗时: %.4f 秒\n', mixer_time); %% ===================== 混频模块性能指标 ===================== fprintf('\n===== 混频模块性能指标 =====\n'); % 计算资源消耗 num_multipliers = 16; % 并行混频器数量 total_mult_ops = num_blocks * 16; % 总乘法操作数 fprintf('并行混频器数量: %d\n', num_multipliers); fprintf('每时钟周期乘法操作: %d\n', num_multipliers); fprintf('总乘法操作数: %d\n', total_mult_ops); fprintf('处理速率: %.2f MSPS\n', length(mixed_serial)/mixer_time/1e6); % 计算信号质量 expected_bb = baseband(1:length(mixed_serial)); % 期望的基带信号 error = mixed_serial - expected_bb; snr = 10*log10(mean(abs(expected_bb).^2) / mean(abs(error).^2)); fprintf('混频后信号SNR: %.2f dB\n', snr); %% ===================== 16倍并行多相抽取器 ===================== fprintf('\n===== 开始16倍并行多相抽取 =====\n'); tic; % 设计抗混叠滤波器(截止频率156.25 MHz) cutoff_freq = 0.9 * (Fs/16/2); % 140.625 MHz (留裕量) filter_order = 255; % FIR滤波器阶数 h = fir1(filter_order, cutoff_freq/(Fs/2)); % 多相分解(16个子滤波器) num_taps = length(h); if mod(num_taps, 16) ~= 0 h = [h, zeros(1, 16 - mod(num_taps,16))]; % 补零对齐 end poly_phase = reshape(h, 16, []); % 16x(L/16) 多相系数矩阵 L_poly = size(poly_phase, 2); % 每个多相分支的抽头数 % 初始化历史缓冲区(存储前L-1个样本) hist_buffer = complex(zeros(16, L_poly-1)); % 复数缓冲区 % 处理每个数据块 decimated_output = complex(zeros(1, num_blocks)); % 抽取后输出 for block_idx = 1:num_blocks % 当前块数据 + 历史缓冲区 current_block = mixed_data(:, block_idx); full_block = [hist_buffer, current_block]; % 16xL_poly % 多相滤波(16路并行乘加) poly_out = zeros(16, 1); % 存储每路输出 for i = 1:16 poly_out(i) = sum(poly_phase(i, :) .* full_block(i, :)); end % 输出抽取结果(16:1) decimated_output(block_idx) = sum(poly_out); % 更新历史缓冲区(移除最旧数据) hist_buffer = full_block(:, 2:end); end % 计算新采样率 Fs_new = Fs / 16; % 312.5 MHz decimator_time = toc; fprintf('并行多相抽取完成! 耗时: %.4f 秒\n', decimator_time); fprintf('输出采样率: %.1f MHz\n', Fs_new/1e6); %% ===== 多相抽取器性能指标 ===== fprintf('\n===== 多相抽取器性能指标 =====\n'); % 资源消耗 num_mult_blocks = 16 * L_poly; % 每块乘法器数量 total_mult_ops_dec = num_blocks * num_mult_blocks; fprintf('每块乘法操作: %d\n', num_mult_blocks); fprintf('总乘法操作数: %d\n', total_mult_ops_dec); fprintf('处理速率: %.2f MSPS\n', length(decimated_output)/decimator_time/1e6); % 信号质量分析 expected_bb_dec = resample(baseband, 1, 16, 1024); % 理想抽取结果 min_len = min(length(decimated_output), length(expected_bb_dec)); error_dec = decimated_output(1:min_len) - expected_bb_dec(1:min_len); snr_dec = 10*log10(mean(abs(expected_bb_dec(1:min_len)).^2) / mean(abs(error_dec).^2)); fprintf('抽取后信号SNR: %.2f dB\n', snr_dec); %% ===================== 频谱分析 ===================== % 1. 原始信号频谱 figure('Name', '原始信号频谱', 'Position', [50, 50, 800, 400], 'NumberTitle', 'off'); N_fft = 2^nextpow2(num_samples); f_axis = (-N_fft/2:N_fft/2-1)*(Fs/N_fft); spectrum = fftshift(abs(fft(rf_fixed, N_fft))); plot(f_axis/1e9, 20*log10(spectrum/max(spectrum))); title('原始信号频谱 (5 GHz 采样率)'); xlabel('频率 (GHz)'); ylabel('幅度 (dB)'); xlim([0, 2.5]); grid on; % 2. 混频后基带信号频谱 figure('Name', '混频后基带信号频谱', 'Position', [100, 100, 800, 400], 'NumberTitle', 'off'); N_fft_mixed = 2^nextpow2(length(mixed_serial)); f_axis_mixed = (-N_fft_mixed/2:N_fft_mixed/2-1)*(Fs/N_fft_mixed); spectrum_mixed = fftshift(abs(fft(mixed_serial, N_fft_mixed))); plot(f_axis_mixed/1e6, 20*log10(spectrum_mixed/max(spectrum_mixed))); title('混频后基带信号频谱 (5 GHz 采样率)'); xlabel('频率 (MHz)'); ylabel('幅度 (dB)'); xlim([-20, 20]); grid on; % 3. 抽取后基带信号频谱 figure('Name', '抽取后基带信号频谱', 'Position', [200, 200, 800, 400], 'NumberTitle', 'off'); N_fft_dec = 2^nextpow2(length(decimated_output)); f_axis_dec = (-N_fft_dec/2:N_fft_dec/2-1)*(Fs_new/N_fft_dec); spectrum_dec = fftshift(abs(fft(decimated_output, N_fft_dec))); plot(f_axis_dec/1e6, 20*log10(spectrum_dec/max(spectrum_dec))); title(sprintf('抽取后基带信号频谱 (%.1f MHz 采样率)', Fs_new/1e6)); xlabel('频率 (MHz)'); ylabel('幅度 (dB)'); xlim([-10, 10]); grid on; % 4. 混频前后时域对比 figure('Name', '混频前后信号对比', 'Position', [150, 150, 1000, 600], 'NumberTitle', 'off'); subplot(2,1,1); plot(real(baseband(1:200))), hold on; plot(real(mixed_serial(1:200))); title('混频前后信号实部对比'); xlabel('样本索引'); ylabel('幅度'); legend('原始基带', '混频输出'); grid on; subplot(2,1,2); plot(imag(baseband(1:200))), hold on; plot(imag(mixed_serial(1:200))); title('混频前后信号虚部对比'); xlabel('样本索引'); ylabel('幅度'); legend('原始基带', '混频输出'); grid on; % 5. 抽取前后时域对比 figure('Name', '抽取前后信号对比', 'Position', [250, 250, 1000, 600], 'NumberTitle', 'off'); subplot(2,1,1); t_orig = (0:length(baseband)-1)/Fs; t_dec = (0:length(decimated_output)-1)/Fs_new; plot(t_orig(1:200)*1e6, real(baseband(1:200))), hold on; stem(t_dec(1:ceil(200/16))*1e6, real(decimated_output(1:ceil(200/16)))); title('抽取前后信号实部对比'); xlabel('时间 (\mus)'); ylabel('幅度'); legend('原始基带', '抽取输出'); grid on; subplot(2,1,2); plot(t_orig(1:200)*1e6, imag(baseband(1:200))), hold on; stem(t_dec(1:ceil(200/16))*1e6, imag(decimated_output(1:ceil(200/16)))); title('抽取前后信号虚部对比'); xlabel('时间 (\mus)'); ylabel('幅度'); legend('原始基带', '抽取输出'); grid on; %% 保存结果 save('parallel_mixer_decimator_results.mat', 'mixed_serial', 'decimated_output', ... 'mixer_time', 'decimator_time', 'num_multipliers', 'snr', 'snr_dec', 'Fs_new'); fprintf('\n处理完成! 结果已保存。\n'); 详细解释这段代码,此代码适用的范围,梳理代码DDC的框架,以此代码为核心写写一篇期刊论文该如何进行
07-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值