1.机器学习概述
1.1 人工智能概述
1.1.1 机器学习与人工智能、深度学习的关系
机器学习是人工智能的一个实现途径,而深度学习是机器学习的一个方法发展而来。
1.1.2 人工智能的起点
1.1.3 机器学习、深度学习能做什么?
应用领域:网络搜索、识别人类语言、自动驾驶、计算机视觉、传统预测、图形识别、自然语言处理。
AGI为Artificial General Intelligence的首字母缩写,意为人工通用智能。它是一种可以执行复杂任务的人工智能,能够完全模仿人类智能的行为。
1.2 什么是机器学习?
1.2.1 定义
机器学习是从数据中自动分析获取模型,并利用模型对未知数据进行预测。
1.2.2 数据集的构成
结构: 特征值 + 目标值
注:
对于每一行数据可以称为样本。
有些数据集可以没有目标值。(需要采用聚类算法这些,进行分类。)
1.3 机器学习算法
1.4 机器学习开发流程
- 获取数据
- 数据处理(缺失值、坏点等等)
- 特征工程(让数据变得更容易被机器学习算法使用的数据)
- 机器学习算法训练(之后得到模型)
- 模型评估
- 应用
2.特征工程
2.1 数据集
2.1.1 可用数据集
Kaggle网址:Find Open Datasets and Machine Learning Projects | Kaggle
UCI网址:UCI 机器学习存储库
scikit-learn网址:scikit-learn: machine learning in Python — scikit-learn 1.5.0 documentation
2.1.2 Scikit-learn工具介绍
- python语言的机器学习的工具
- Scikit-learn包含许多机器学习算法的实现
2.1.3 安装
pip install Scikit-learn
# 如果有多个python版本的话,需要指定,以3.12为例
pip3.12 install Scikit-learn
完了之后,可以查看自己是否安装成功。
pip list
2.1.2 Sklearn数据集
# * 表示的是数据集的名字
# 获取小规模数据集,数据包含在datasets里
sklearn.datasets.load_*()
# 获取大型数据集,需要从网络下载,默认是 ~/scikit_learn_data/
# datahome : 标识数据集下载的目录
# subset:'train' 或 'test' 或 'all' 可选,选择要加载的数据集
sklearn.datasets.fetch_*(datahome = None,subset = "train")
# 两种方法的返回的数据值
# load和fetch返回的数据类型datasets.base.Bunch(字典格式),这个是继承自字典
# data: 特征值数据数组,是[n_samples * n_features]的二维numpy*ndarray数组
# target: 标签数组,是n_samples 的一维numpy * ndarray数组
# DESCR: 数据描述
# feature_names: 特征名
# target_names: 标签名
示例:
from sklearn.datasets import load_iris
def datasets_demo():
"""
sklearn数据集使用
:return:
"""
# 获取数据集
iris = load_iris()
print("鸢尾花数据集:\n", iris)
print("鸢尾花数据集描述:\n", iris["DESCR"])
print("鸢尾花数据集特征值的名字:\n", iris.feature_names)
print("鸢尾花数据集特征值的形状:\n", iris.data, iris.data.shape)
return None
if __name__ == '__main__':
datasets_demo()
2.1.3 数据集的划分
机器学习数据集会划分为两个部分:
- 训练数据:用于训练 , 构建模型
- 测试数据:在模型检验中使用,评估模型是否有效
数据集划分API
- sklearn.model_selection.train_test_split(arrays,*options)
- x 数据集的特征值
- y 数据集的标签值
- test_size 测试集的大小,一般为float
- random_state 随机数种子,不同的种子会造成不同的随机采样结果。
- return 训练集特征值,测试集特征值、训练集目标值、测试集目标值
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def datasets_demo():
"""
sklearn数据集使用
:return:
"""
# 获取数据集
iris = load_iris()
# 数据集划分
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
print("训练集特征值:\n", x_train, x_train.shape)
print("训练集目标值:\n", y_train, y_train.shape)
print("测试集特征值:\n", x_test, x_test.shape)
print("测试集目标值:\n", y_test, y_test.shape)
return None
if __name__ == '__main__'