- 博客(65)
- 资源 (2)
- 收藏
- 关注
原创 markdown公式使用$$ $$和\[ \]包裹的区别
在 Markdown 中,$$ 和 \[ \] 都可用于将公式独立成行并居中显示,但两者在兼容性、历史背景和环境支持上存在差异。$$ 源自早期 TeX 语法,可能在部分 Markdown 解析器中存在兼容性问题,导致公式无法正确显示。而 \[ \] 作为 LaTeX 中正式的定义,具有更好的兼容性,能稳定地在各种环境中呈现公式,且更易于与 LaTeX 排版体系集成,适合文档转换工具如 Pandoc 的使用。因此,\[ \] 在 Markdown 中更为推荐。
2025-05-17 00:27:22
166
原创 解决硬编码图标情况下ttkbootstrap子窗口不显示图标问题
ps:iconphoto() 方法的第一个参数控制图标是否应用于所有窗口。当设置为 True 时,图标会应用于主窗口和所有子窗口(包括messagebox);iconbitmap() 需要一个ico类型位图参数作为窗口图标,.png.jpg等其他类型不能显示。iconphoto() 可以将 .png图片设置为窗口Logo。window.iconbitmap('logo01.ico') # 更改窗口图标。# False:该图像仅使用这个窗口,而不是将来创建的toplevels窗口。
2025-05-16 22:59:27
1040
原创 Revit之Dynamo概述
Dynamo是Revit的可视化编程插件,通过节点和数据流的方式扩展了Revit的功能,为设计师和工程师提供了更强大的工具来实现复杂的几何造型和自动化任务。可视化编程:Dynamo采用可视化编程的方式,用户通过拖拽节点和连接数据流来构建脚本。这种方式降低了编程的门槛,使非专业程序员也能快速上手。例如,设计师可以通过Dynamo创建复杂的几何形状,如双曲面屋顶或参数化楼梯,而无需编写复杂的代码。
2025-05-01 10:34:38
718
原创 Python相对路径问题与工作目录和脚本目录
最近在编写代码并调试时,笔者发现一个python路径所赢得问题,即在不同的工作环境下(使用某IDE运行或者直接运行),想同的代码文件竟然会出现不同的结果。原因在于文件中相对路径的引用,是基于工作目录而不是脚本所在物理路径,所以在笔者根据脚本所在物理路径来进行寻址的时候,得到了不同的结果。接下来,简单介绍一下Python中的相对路径问题。在 Python 中,相对路径索引主要用于文件和目录的访问,它允许你以相对于当前工作目录或某个特定目录的方式来指定文件或目录的位置。
2025-04-23 16:10:26
832
原创 Anaconda、conda和PyCharm在Python开发中各自扮演的角色
例如:通过`Settings > Project Interpreter`选择conda环境的Python路径(如`~/anaconda3/envs/myenv/python.exe`)^9^11。这使得用户无需手动配置即可快速开始编程。通过合理搭配,Anaconda/conda解决环境和依赖问题,PyCharm提供高效开发体验,两者共同支持Python项目的全流程管理。通过合理搭配,Anaconda/conda解决环境和依赖问题,PyCharm提供高效开发体验,两者共同支持Python项目的全流程管理。
2025-04-22 22:18:09
1290
原创 调和平均数通俗易懂的解释以及为什么这样定义,有什么用
整个旅程的「平均速度」不是简单的(30+60)/2=45km/h,而是调和平均数40km/h^3^4。调和平均数的定义原因:因为它处理的是倒数关系的问题,比如速度和时间成反比,所以用倒数来平均更合理。1. 调和平均数的计算方式:先取速度的倒数(1/30和1/60),求平均数((1/30+1/60)/2=1/40),再取倒数得到40;2. 比例平衡问题:当已知各组数据的总量(如总金额、总路程)但缺乏频数(如采购次数、时间)时,必须通过倒数关系推导平均值^1^7。四、与其他平均数的对比。二、为什么这样定义?
2025-04-22 18:28:22
416
2
原创 平均精确度(Average Precision, AP)和均值平均精确度(Mean Average Precision, mAP)的区别和联系浅析
平均精确度(Average Precision, AP)和均值平均精确度(Mean Average Precision, mAP)是机器学习中用于评估模型性能的核心指标,二者的区别主要体现在“Mean”所代表的统计维度上。部分场景(如COCO挑战赛)会结合多个IoU阈值(如0.5到0.95,步长0.05)计算AP,再取均值作为最终mAP,以综合评估模型在不同定位精度下的表现。在目标检测中,若数据集包含多个类别(如COCO的80类),mAP需对每个类别的AP求均值,以评估模型整体性能。
2025-04-21 15:33:44
524
原创 【WTYOLO】使用GPU训练YOLO模型教程记录
本文主要记录笔者亲自测试的使用GPU进行YOLO模型训练的过程,包括安装CUDA,cuDNN,pytorch的笔记记录。PyTorch、CUDA 和 cuDNN 在深度学习领域尤其是 YOLO 模型训练中发挥着至关重要的作用,它们相互协作,共同推动了深度学习模型的高效训练和广泛应用。PyTorch 作为开源的机器学习库,凭借其动态计算图、易用性与灵活性以及强大的社区支持,为开发者提供了一个高效且灵活的平台来构建和训练深度学习模型。
2025-04-20 19:11:45
2112
1
原创 【WT】YOLOv8模型训练结果网页可视化与分析展示TPL模板
我们重新编制了对图片的引用路径,如果你也正在使用YOLOv8模型,可以将以下代码直接拷贝下来,在你的结果目录(与模型结果图片同级目录)新建一个HTML文档,将代码粘贴进去,在浏览器打开该HTML文件,就能看到你的结果图片在网页中的调用,结合文字解释帮助你快速分析模型结果。
2025-04-16 14:34:24
244
原创 【WT】YOLO模型训练结果文件详细分析与理论认识-以YOLOv8为例
YOLO模型训练结果文件图涵盖了从数据标注到模型性能评估的多个方面。其中,混淆矩阵展示了模型对各类别的分类效果,F1曲线反映了模型在精确率和召回率之间的平衡,而标签分布图和相关性分布图则揭示了数据集的特征。精度、召回率和mAP曲线直观地呈现了模型性能的变化趋势,帮助开发者评估模型的优劣。训练结果中的训练批次标注图和验证批次标注与预测图则分别用于检查数据标注质量和对比模型预测结果,为模型的调试和优化提供了直观的依据。这些文件和图表共同为开发者提供了全面的视角,以便更好地理解模型的训练过程和性能表现
2025-04-16 12:00:38
1371
原创 【WT】基于YOLOv8的模型训练结果文件图片解析
本文基于笔者使用的YOLOv8模型训练结果文件编制而成,主要对各结果图片的含义和指标进行解析理解,便于掌握使用YOLO。YOLOv8是Ultralytics团队于2023年推出的新一代实时目标检测模型,其在继承YOLO系列高效特性的基础上,通过多项技术创新实现了精度与速度的突破。该模型支持目标检测、实例分割、姿态估计等多任务处理,并具备高度灵活的开发接口,成为工业与科研领域的热门选择。
2025-04-16 10:39:17
1505
原创 WIKTOK-YOLOv8单项目训练代码
打开pycharm,新建项目,选择虚拟环境venv,配置好系统的python版本,创建虚拟环境项目。2.6 export.py 导出模型脚本文(如 ONNX、TensorRT)当然也可以分块安装,如下文件所示,在pip之前先配置镜像加速,见。在2.1之后,紧接着在终端输入以下命令行安装ultralyics。2.1 requirements.txt 项目依赖文件。2.3 train.py 训练脚本文件。2.4 val.py 验证脚本文件。对自己的项目进行说明,不多赘述。
2025-04-13 15:26:54
661
原创 《代码与星群》
有人将函数比作乐高积木,我却觉得它们更像普鲁斯特的玛德琳蛋糕——某段递归突然唤醒旧日记忆:那年用VB写下第一个“Hello World”的男孩,不会想到二十年后,他仍在与类型系统的幽灵搏斗,只为在JSON的荒漠里拓印一句“今晚月色真美”。正如迈克尔·杰克逊的悖论:“优化的第一法则是不要优化”,我们追逐效率却常忘记,最优雅的代码往往是向时间妥协的碑文。那些未被捕获的异常,像未寄出的情书堆积在堆栈深处,而内存泄漏的裂缝中,生长出野草般的困惑。我的世界由0与1的潮汐构成,键盘是渡船,屏幕是永恒的夜。
2025-04-13 12:43:43
143
原创 WT-yolo数据集配置文件data.yaml的写法示例
配置文件用于定义数据集的结构和类别信息。这里列出几种常见的写法和示例,在正式训练时需要根据实际需求正确配置。虽然 YOLO 通常使用列表格式定义类别名称,但某些版本可能支持字典格式。不过,建议使用列表格式以确保兼容性。这是最常见的写法,使用相对路径来指定训练集、验证集和测试集的路径。如果项目需要在不同环境中运行,可以使用绝对路径来指定数据集的位置。如果需要同时使用多个数据集(例如,分别训练和验证),可以在。如果项目中没有测试集,可以省略。
2025-04-13 11:48:41
554
原创 【持续更新】WT-YOLO数据集配置与目录划分
本文将根据笔者实际经验来介绍YOLO数据集配置与目录划分,包括数据集配置文件dataset.yaml的详细解析。全面的YOLO项目目录框架,可支持使用多种数据集、训练多种模型。对于部署大型训练项目使用。还有单个项目或但数据集目录划分。
2025-04-13 11:14:30
996
原创 YOLO 的 data.yaml 配置文件路径解析
使用相对路径(如../)是为了让项目结构更加灵活和可移植。你可以根据项目的实际目录结构调整路径配置,确保路径指向正确。
2025-04-13 11:06:36
576
3
原创 理解Commit:版本控制的核心概念
Commit是版本控制系统中的一个操作,它将工作目录中的更改保存到版本库中,形成一个新的版本节点。记录文件的变化内容保存提交者的信息包含时间戳生成唯一的标识符(如Git中的SHA-1哈希值)在Git中,commit是"将暂存区中的内容提交到本地版本库"的操作,每次使用git commit命令都会在本地版本库生成一个40位的哈希值(commit-id),这个commit-id在版本回退时非常有用。
2025-04-09 17:31:59
919
原创 YOLO数据集目录划分方式及对应的data.yaml配置
YOLO数据集目录划分主要有文件夹划分和txt索引文件划分两种方式,对应的data.yaml配置有所不同。对于正式项目,使用文件夹划分方式,结构更清晰对于快速实验,可以使用txt索引文件方式始终验证数据集路径和标签文件是否正确注意不同YOLO版本的特殊配置要求通过合理的数据集划分和正确的data.yaml配置,可以确保YOLO模型训练过程顺利进行。
2025-04-09 16:52:04
1682
原创 YOVOv8的使用教程,包括虚拟环境的创建,库的下载和引入,数据集的准备,如何训练,如何评判训练结果等
启动 PyCharm 后,选择 “File” 菜单中的 “New Project” 选项,这将打开一个窗口,用于设置新项目的相关参数。在弹出的 “New Project” 窗口中,找到 “New environment using” 选项,从下拉菜单中选择 “Virtualenv”,这将创建一个独立的 Python 虚拟环境,用于安装和管理 YOLOv8 所需的 Python 包,避免与系统全局的 Python 环境或其他项目环境发生冲突。在 “New Project” 窗口中,指定项目的保存路径,通常可以
2025-04-09 14:08:19
527
原创 PyCharm中虚拟环境.venv搭建详解
PyCharm中创建、配置和管理虚拟环境,可以确保每个项目都有独立的依赖项,从而提高开发效率和项目的可移植性。接下来介绍一下pycharm虚拟环境的目录介绍以及搭建和管理办法。
2025-04-06 19:44:18
2525
原创 labelme json 标签转yolo txt【记录】
03 从labeme标注的json文件提取标签label类别class脚本(w_extract_json_label.py)01 labelme json 转 txt(w_convert_labelme_to_yolo.py)02 检查图片和标签文件是否对应python脚本(w_check_img_to_label.py)04 重置图片格式大小【脚本存在一些问题】(w_resize_train_images.py)
2025-04-06 18:04:09
416
原创 总结:YOLOv8 模型训练结果参数理解与分析
YOLOv8 模型训练完成后,会生成一系列结果文件,这些文件为模型的评估和后续优化提供了重要依据。权重文件夹(weights):包含训练过程中生成的模型权重文件,如best.pt和last.pt。best.pt保存了训练过程中性能最佳的模型权重,而last.pt则保存了最后一次训练的结果。这些权重文件是模型进行推理和进一步训练的基础。混淆矩阵(confusion_matrix.png 和 confusion_matrix_normalized.png):混淆矩阵是评估分类模型性能的重要工具。
2025-03-30 16:32:14
1331
原创 Yolov8模型训练结果参数理解与分析
YOLOv8模型的损失函数是衡量模型预测值与真实值之间差异的关键工具,它在模型训练过程中起到了至关重要的作用。定位损失(Box Loss,合记为box_loss):定位损失用于衡量预测框与真实框之间的误差,通常采用 GIoU(Generalized Intersection over Union)损失函数来计算。GIoU损失不仅考虑了预测框与真实框的重叠面积,还考虑了它们的形状和大小。定位损失的值越小,表示预测框与真实框之间的误差越小,模型对目标的定位越准确。
2025-03-30 16:31:21
3177
原创 使用Yolov8进行图形目标检测训练完成后的结果参数说明
使用Precision-Recall曲线计算的面积,mAP@[.5:.95]表示在不同IoU阈值下的平均mAP,综合考虑了模型在不同精度和召回率条件下的性能,是目标检测任务中常用的评价指标。- 当RCC图中曲线在较高置信度水平下呈现较高召回率时,说明算法在目标检测时能够准确地预测目标的存在,并在过滤掉低置信度的预测框后依然能够维持高召回率,反映了算法在目标检测任务中的良好性能。- RCC图中曲线的斜率越陡峭,表示在过滤掉低置信度的预测框后,获得的召回率提升越大,从而提高模型的检测性能。
2025-03-30 15:50:48
755
原创 YOLOv8环境配置及依赖安装过程记录
最近在学习yolov8进行图片检测,项目将使用YOLOv8进行图片的损伤检测,数据集在dataset文件夹里,、包含测试集test,训练集train,验证集valid。classes.txt是损伤分类文件,data.yaml是相关配置文件。model文件夹下的yolov8n.pt是一个原始模型。使用yolov8构建训练模型,测试模型,验证模型并实现模型部署的完整代码。在安装ultralytics时直接pip安装太慢,故记录使用镜像源快速安装的办法。
2025-03-29 21:09:53
1286
原创 网页滚动内容动态加载(渐显效果)实现
在用户滚动到特定区域时触发动画,增强视觉吸引力。:通过改变不同元素的滚动速度,创建层次感和深度感。根据窗口高度和阈值判断元素是否进入视窗范围。:当用户滚动到页面底部时,动态加载更多内容。创建了一个简单的页面结构,包含多个。事件确保页面加载完成后再执行脚本。元素,计算其距离页面顶部的距离。元素,这些元素将在滚动时显现。属性为元素添加渐入和滑动效果。类用于控制元素的显现状态。如果元素进入视窗范围,添加。如果元素离开视窗范围,移除。属性用于平滑过渡效果。类以隐藏元素(可选)。
2025-03-22 10:40:15
306
原创 单页响应式 图片懒加载HTML页面
使用CSS Grid布局,根据屏幕宽度自动调整色块数量。将色块分为自然风光、城市建筑和抽象艺术三类。在不同设备上都有良好的显示效果。图片在滚动到视口附近时才会加载。使用随机生成的色块作为内容展示。每个色块都有独特的颜色和编号。每类都有独立的标题和网格布局。色块有悬停效果和阴影效果。
2025-03-21 21:10:33
286
原创 基于ThinkPHP6用户登录逻辑,结合FastAPI框架实现用户登录系统的全流程解析
组织用户认证相关接口(注册、登录),并通过。组织用户认证相关接口(注册、登录),并通过。:在需要登录的路由中添加。:在需要登录的路由中添加。
2025-03-11 21:36:52
724
原创 参考thinkphp架构的FastAPI实现思路
虽然 FastAPI 和 ThinkPHP 的设计理念和语言不同,但 FastAPI 同样可以实现 ThinkPHP 的核心功能,如路由、模型、视图、中间件、JWT、Session 等。通过以上实现,FastAPI 可以完全覆盖 ThinkPHP 的核心功能,同时利用其异步编程和高性能特性,构建现代化的 Web 应用和 API。FastAPI 天生高性能,支持异步编程,可结合缓存(如 Redis)和任务队列(如 Celery)进一步优化。FastAPI 的路由函数相当于控制器方法,负责处理请求和返回响应。
2025-03-11 21:34:54
632
原创 ThinkPHP框架中各模块通过MVC架构和扩展机制协同工作形成完整的请求处理流程
通过MVC模块的协同,ThinkPHP实现了从请求解析到数据处理的完整链路,开发者可根据需求灵活组合各组件,构建高效安全的Web应用。作为业务逻辑的调度中心,接收请求参数、调用模型处理数据、选择视图渲染响应,并协调中间件与其他模块。负责数据展示,支持模板引擎(如原生PHP或Blade风格语法),实现动态内容渲染。
2025-03-11 21:33:06
958
原创 ThinkPHP6用户登录系统的全过程
ThinkPHP6用户登录系统的全过程涉及请求处理、数据传输、路由分发、控制器逻辑、模型验证及中间件协作等多个模块的交互。(白名单接口跳过中间件验证)
2025-03-11 21:27:37
762
原创 记录使用python smtplib邮件发送
在发送过程中需要手动调用一下server.quit()方法关闭会话,否则会报一个错误。基于多源异构数据存储管理系统开发时遇到的邮件发送问题,这里做一下记录。这是因为未能正确关闭导致的。
2024-12-20 16:35:07
468
原创 一个最简单的方法解决Python的TypeError: xxx() takes 1 positional argument but 2 were given
当我们在类内写了函数进行调用的时候,有时侯并没有传递参数,所编写的函数方法也不需要参数,但运行会报错:TypeError: xxx() takes 1 positional argument but 2 were given,参数请求的错误,某并未深究其中原因,但单纯就解决这个问题而言,根据某实际经验,只需要在你的目标调用函数里定义空参数即可解决报错问题。给调用方法添加为空的形参,报错几个就添加几个,一般能够解决问题。但建议还是了解其后原理用最正确的方法,防止留下程序漏洞造成错误。
2024-12-18 17:39:02
3880
1
原创 python静态方法(@staticmethod)详解
在 Python 中,静态方法()是属于类而不是类实例的方法。它们可以在不创建类实例的情况下被调用。静态方法通常用于那些与类的状态无关的操作。这意味着静态方法不需要访问类的属性或实例的状态。
2024-12-16 20:21:53
570
原创 ttkbootstrap的Gallery案例学习之File-Search-Engine-Tk逐行注释
ttkbootstrap的Gallery案例学习之File-Search-Engine-Tk,该案例是一个使用Tkinter库构建的简单文件搜索引擎的Python脚本,并结合ttkbootstrap以实现更现代的外观。该应用程序允许用户根据搜索词和类型(搜索词应包含在文件名中、以文件名开头或以文件名结尾)在指定目录中搜索文件。实现了一个功能齐全且简单的文件搜索应用程序。用户可以浏览目录,指定搜索词,并选择如何将这些词与文件名进行匹配。结果显示在树视图中,并且通过使用线程和队列,应用程序在搜索过程中保持响应。
2024-12-16 20:02:26
378
【计算机视觉】YOLOv8模型训练结果分析:关键图表与指标解析及模型优化指导了YOLOv8
2025-04-16
【计算机视觉】YOLOv8目标检测模型快速上手:从环境搭建到模型训练与评估的详细步骤解析了文档的核心内容
2025-04-09
Python程序设计课后实验练习题实验3-13到实验8-2题目代码大全
2022-05-19
网站安装引导配置文件(适用thinkphp及需要安装功能的任何网站)
2022-05-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人