python影像裁剪并保存成tiff格式(规则网格法)

本文介绍如何使用Python读取Landsat 8数据,通过波段叠加和mask矩阵操作,将影像裁剪为256x256大小,并以TIF格式保存。内容涉及数据预处理、数组操作及图像裁剪技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇文章简单介绍了波段的叠加,本文对叠加的波段进行影像裁剪,输出是channels×256×256的tiff格式。本文构建了相应的mask矩阵加在了channel的最后一个通道。

数据准备

波段的读取可以参考python批量读取landsat8的波段,具体的函数整理数据的函数在这篇文章都介绍的很详细,这里不再重复,我们直接用它的返回列表。

波段叠加的具体方式参考python矩阵堆叠-实现遥感影像波段叠加,这些都是博主刚刚更新过的内容,这里直接拿来用。

from read_landsat8 import read_landsat8_bands
import numpy as np
from osgeo import gdal_array

def get_img(base_path):
    """
    叠加波段的简单demo
    与mask矩阵一起构建成3维数组结构"""
    bands = read_landsat8_bands(base_path)

    # 读取数据
    B1_gdal = gdal_array.LoadFile(bands[0][0])
    B2_gdal = gdal_array.LoadFile(bands[0][1])
    B3_gdal = gdal_array.LoadFile(bands[0][2])

    # 转化成ndarray形式
    B1_np = np.array(B1_gdal)
    B2_np = np.array(B2_gdal)
    B3_np = np.array(B3_gdal)
    print(B1_np.shape)

    B123 = np.stack([B1_np, B2_np, B3_np], axis=0)
    print(B123.shape)  # 3,7301,7341

    # 构建0-1 mask矩阵
    height = B123.shape[1]
    width = B123.shape[2]
    mask = np.random.randint(0, 2, (1, height, width))

    # 按照通道堆叠
    img = np.concatenate([B123, mask], axis=0)

    return img

这里得到的img其实是一个3维数组,在本例中,它的维度是
4×7301×7341

envi查看一下堆叠后的图像
在这里插入图片描述

图像裁剪

有了上面构建的img数据,再设定一个裁剪尺寸,我们就可以进行图像裁剪了。

def crop_img(img, cropsize):
    """
    裁剪图像为指定格式并保存成tiff
    输入为array形式的数组
    """
    num = 0
    height = img.shape[1]
    width = img.shape[2]

    # 从左上开始裁剪
    for i in range(int((height) 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值