利用图神经网络进行药物再利用的计算方法(下)

本文介绍了一种利用图神经网络(GNN)的药物再利用模型GDRnet,它有效处理140万节点的异构网络,预测新疾病疗法。GDRnet在减少计算量的同时,在COVID-19数据中显示出潜在药物。关键创新包括预处理策略和生物解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 文章信息

作者

Siddhant Doshi, & Sundeep Prabhakar Chepuri (2022).

单位

期刊或会议

题目

A computational approach to drug repurposing using graph neural networks

2. BGC

背景

药物再利用是一种确定已批准药物新的医学适应症的方法。

目的

本研究提出了一种图神经网络药物再利用模型,我们称之为GDRnet,以有效地筛选大型批准药物数据库,并预测新疾病的可能治疗方法。我们将药物再利用作为一个多层异构网络中的链接预测问题,该网络约有140万条边,捕获了代表药物、疾病、基因和人体结构的近42,000个节点之间的复杂相互作用。

结论

与其他最先进的基线方法相比,我们证明了所提出的模型在真实数据集上的有效性。对于大多数疾病,GDRnet 将实际治疗药物排在前 15 位。此外,我们将 GDRnet 应用于冠状病毒病 (COVID-19) 数据集,并表明正在研究预测列表中的许多药物对疾病。

3. 创新点

方法

就是利用SIGN的预处理策略,将其作为编码器这样可以让模型在大型图上运行。然后再里利用一个打分函数为主体的解码器。

请添加图片描述
请添加图片描述

理论

具体理论可以看利用图神经网络进行药物再利用的计算方法(上)

应用

我们提出了一个用于药物再利用模型的GNN模型,称为GDRnet,从一个巨大的批准药物数据库中预测药物,以供进一步研究。

4. 文章好在哪里

创新点

1.在大型图上运行,并提供生物方面的解释

2.与传统的模型(GAT、GCN、SAGE)相比,减少了大量的计算(预处理)

图片

图片在上面给出了,感觉下面这个图2画的真心不错。以后我们也可以这样来配色和搭配

逻辑

文章的逻辑还是不错的,整体来说还是一环套一环,而且基本上都能有理论对其论点进行支撑。文章结构也是不错的,这点值得我学习。

5. 核心步骤

思路

  1. 我们将药物再利用问题表述为一个链接预测问题,并提出了一个新的基于GNN的药物再利用专用模型。GDRnet 的可训练编码器预先计算了邻域特征,因此在减少训练和推理时间的情况下计算效率高。可训练解码器基于从编码器获得的低维嵌入对药物-疾病对进行评分。编码器和解码器以端到端方式进行训练。
  2. 我们根据其链接预测准确性以及它对已知治疗药物的排名情况来验证 GDRnet。GDRnet 将批准的治疗药物排在前 15 位。这表明了所提出的药物再利用模型的有效性。
  3. 我们进行了一项消融研究,以显示基因和解剖实体的重要性,这模拟了药物和疾病实体之间的间接相互作用。
  4. 我们针对GDRnet与现有的GNN模型的计算运行时间做了一份分析报告。我们通过在训练和推理时间方面实现的性能增益,演示了在GDRnet中使用SIGN作为编码器的优势。
  5. 我们通过将将 GDRnet 应用于来自 [19] 的 COVID-19 相互作用组信息数据集。发现 GDRnet 预测的许多用于 COVID-19 的药物正在研究其对抗疾病的功效。

感觉主要的有点在于:1.生物和数学上给出了解释;2.在大型图上减少了计算量并且保证模型的预测能还处在一个不错的程度。3.紧跟热点,新冠。

图表

请添加图片描述

感觉这个表的形式不错,以后我写论文的时候也加上去。给人一种一目了然的感觉。

### 图神经网络药物发现和研发中的应用 #### 背景介绍 图神经网络(Graph Neural Networks, GNNs)是一种专门设计用于处理图结构数据的深度学习模型。由于分子和蛋白质本质上可以用图来表示——原子作为节点,化学键作为边,因此GNNs在药物发现和研发中具有显著的优势。 #### 预测蛋白质-药物相互作用 GNNs可以通过整合蛋白质和药物的特征信息,准确预测它们之间的相互作用[^2]。这种能力对于识别潜在的有效化合物至关重要,因为理解蛋白质如何与候选药物结合可以帮助科学家筛选出更有效的治疗方案。 #### 特征提取与表征学习 在一个典型的流程中,输入到GNN的是一个描述复杂系统的图结构,而输出则是该系统中各个组成部分的低维嵌入向量。例如,在医疗领域,如果我们将不同疾病视为节点,并用共病关系构建边,则通过GNN的学习过程可以获得反映这些疾病之间关联性的紧凑数值表达形式[^3]。同样地,当应用于药物分子时,这种方法有助于揭示隐藏于其拓扑特性背后的生物学意义。 #### 加速新药开发周期 借助大语言模型(Large Language Models, LLMs),再加上像GNN这样的先进技术手段的支持,整个制药行业的运作模式正在经历深刻变革。随着AI算法性能不断提升以及计算资源日益丰富,利用计算机模拟代替部分实验成为可能,从而大大缩短了从实验室研究阶段过渡至临床试验所需时间成本的同时还提高了成功率预期[^1]。 ```python import torch from torch_geometric.nn import GCNConv class SimpleGCN(torch.nn.Module): def __init__(self, num_node_features, hidden_channels, output_dim): super(SimpleGCN, self).__init__() self.conv1 = GCNConv(num_node_features, hidden_channels) self.conv2 = GCNConv(hidden_channels, output_dim) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = torch.relu(x) x = self.conv2(x, edge_index) return x ``` 上述代码展示了一个简单的图卷积网络实现例子,它可用于多种任务包括但不限于链接预测或者分类问题解决上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值