python定时监控设备出现coredump,并邮件通知

#!/usr/bin/python2.7

# -*- coding: utf-8 -*-

#add by [email protected]

import re

import subprocess

from nose import with_setup

from .utils import st_log

import paramiko

import os

import smtplib

from email.mime.text import MIMEText

from email.mime.application import MIMENonMultipart

import ssl

log = st_log()

ssl._create_default_https_context = ssl._create_unverified_context()

#

# # 把对应的coredump文件下载到本地

### Python 中出现 Segmentation Fault (Core Dumped) 的原因 当 Python 程序遭遇 `Segmentation fault (core dumped)` 错误时,通常意味着程序尝试访问未分配给它的内存区域。这种错误可能由多种因素引起: #### 1. C 或 Cython 扩展模块中的缺陷 如果使用的库中有用 C 或者 Cython 编写的扩展模块,则这些部分可能存在指针操作失误的情况[^1]。 #### 2. 不兼容的依赖项版本 不同版本之间的不匹配可能导致意外行为,在某些情况下甚至会触发段错误。特别是对于 GPU 加速计算而言,NVIDIA 驱动、CUDA 工具包以及 cuDNN 库之间需要保持良好的兼容性[^3]。 #### 3. 内存管理问题 过度消耗物理 RAM 可能迫使操作系统终止进程;此外,不当处理大文件读写也可能引发此类异常。 --- ### 解决方案概述 针对上述提到的各种可能性,以下是几种常见的排查和修复措施: #### 使用 GDB 调试工具定位具体位置 安装配置 GNU Debugger 后可以通过命令行参数启动目标应用程序来捕获崩溃现场信息,进而分析堆栈跟踪找出确切发生地点[^2]: ```bash gdb --args python your_script.py arg1 arg2 ... ``` #### 更新或重新编译有问题的第三方组件 确保所有必要的软件包都处于最新状态,且相互间不存在冲突关系。必要时可以从源码开始构建特定版本以排除潜在风险点. #### 检查硬件资源占用情况 监控 CPU 和内存利用率的变化趋势,适当调整批量大小或其他超参数设置减少瞬时间峰值需求量。同时也要留意是否有其他后台服务抢占过多份额影响到当前任务正常运作. #### 尝试简化输入数据集规模 有时过大的训练样本集合也会成为诱因之一,因此建议先采用较小规模的数据子集来进行测试验证逻辑正确与否再逐步扩大范围直至全量参与运算过程.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值