写在最前面:本文是阅读《Quantum Computation and Quantum Information》时所做,作者之前略微学过线性代数,但了解不深,阅读第二章第一节线性代数部分时遇到了很多困难,今将学习笔记发布给大家参阅,若有疏漏欢迎理性讨论,希望能给大家带来一点启发。
[2.1.2] (这是书上的相关内容的对应章节)
1.线性算子与矩阵表示的转换:
1.1 一般情况
线性算子本身与坐标系无关,但要将其矩阵联系起来,需要建立坐标系,而建立坐标系首先要确定基。
给定输入基∣vi⟩|v_i\rangle∣vi⟩和输出基∣wi⟩|w_i\rangle∣wi⟩,则有以下确定线性变换的矩阵表示的两种方法:
(1).直接变换法:
设线性算子AAA有映射关系A∣vj⟩=∣w⟩=∑iAij∣wi⟩A|v_j\rangle=|w\rangle=\displaystyle\sum_iA_{ij}|w_i\rangleA∣vj⟩=∣w⟩=i∑Aij∣wi⟩,则用于线性表示∣w⟩|w\rangle∣w⟩的系数AijA_{ij}Aij即为表示线性算子的矩阵的第iii行第jjj列。
(2).外积计算法:
在(1)的基础下,如果∣wi⟩|w_i \rangle∣wi⟩和 ∣vi⟩|v_i\rangle∣vi⟩是两组标准正交基时,
由完备性关系:A=IWAIV=∑ij∣wi⟩⟨wi∣A∣vj⟩⟨vi∣=∑i⟨wi∣A∣vj⟩∣wi⟩ ⟨vi∣A = I_WAI_V=\displaystyle \sum_{ij} |w_i\rangle\langle w_i|A|v_j\rangle\langle v_i| = \displaystyle \sum_i \langle w_i|A|v_j\rangle |w_i\rangle\ \langle v_i|A=IWAIV=ij∑∣wi⟩⟨wi∣A∣vj⟩⟨vi∣=i∑⟨wi∣A∣vj⟩∣wi⟩ ⟨vi∣
可以证明,$A_{ji} = \langle w_i|A|v_j\rangle ,,,A_{ji}表示表示表示A的矩阵的第的矩阵的第的矩阵的第j行第行第行第i$列的元素。
1.2 过渡矩阵
在1.1的情况下,若线性算子AAA是这么一个矩阵:A∣vi⟩=∣wi⟩A|v_i\rangle = |w_i\rangleA∣vi⟩=∣wi⟩,即AAA将一组基一一映射到另一组基,称AAA的矩阵表示为过渡矩阵.
可以证明,当∣wi⟩|w_i \rangle∣wi⟩和$|v_i\rangle $是两组标准正交基时,过渡矩阵可以这样得到:
A=∑i∣wi⟩⟨vi∣A = \displaystyle \sum_i|w_i\rangle\langle v_i|A=i∑∣wi⟩⟨vi∣
1.3恒等算子
恒等算子III定义为I∣v⟩≡∣v⟩I|v\rangle \equiv |v\rangleI∣v⟩≡∣v⟩.在输入基和输出基相同的情况下,III的矩阵表示可以为EEE(即单位矩阵,除对角线全为1外其余均为0).
1.4二维复向量空间上的重要的外积:
∣0⟩⟨0∣=[1000]|0\rangle\langle0| = \left[ \begin{matrix}1&0\\0&0\end{matrix}\right ]∣0⟩⟨0∣=[1000]
∣0⟩⟨1∣=[0100]|0\rangle\langle1| = \left[ \begin{matrix}0&1\\0&0\end{matrix}\right ]∣0⟩⟨1∣=[0010]
∣1⟩⟨0∣=[0010]|1\rangle\langle0| = \left[ \begin{matrix}0&0\\1&0\end{matrix}\right ]∣1⟩⟨0∣=[0100]
∣1⟩⟨1∣=[0001]|1\rangle\langle1| = \left[ \begin{matrix}0&0\\0&1\end{matrix}\right ]∣1⟩⟨1∣=[0001]
[2.1.4]
2.内积
Hilbert空间定义内积应满足三个条件:
(1).线性性质: (∣v⟩,∑iλi∣wi⟩)=∑iλi(∣v⟩,∣wi⟩).(|v\rangle,\displaystyle \sum_{i}\lambda_i|w_i\rangle) =\displaystyle \sum_{i}\lambda_i(|v\rangle,|w_i\rangle).(∣v⟩,i∑λi∣wi⟩)=i∑λi(∣v⟩,∣wi⟩).
(2).交换共轭:(∣v⟩,∣w⟩)=(∣w⟩,∣v⟩)∗.(|v\rangle,|w\rangle) = (|w\rangle,|v\rangle)^{*}.(∣v⟩,∣w⟩)=(∣w⟩,∣v⟩)∗.
(3).非负性:(∣v⟩,∣v⟩)≥0.(|v\rangle,|v\rangle)\geq0.(∣v⟩,∣v⟩)≥0.
3.Gram-Schmidt 正交化递推公式:
(1).∣v1⟩=∣w1⟩|v_1\rangle = |w_1\rangle∣v1⟩=∣w1⟩
(2).∣vk+1⟩=∣wk+1⟩−∑i=1k⟨vi∣wk+1⟩∣vi⟩∣∣ ∣wk+1⟩−∑i=1k⟨vi∣wk+1⟩∣vi⟩∣∣|v_{k+1}\rangle = \frac{|w_{k+1}\rangle - \displaystyle \sum_{i=1}^{k}\langle v_i|w_{k+1}\rangle|v_i\rangle}{||\ |w_{k+1}\rangle - \displaystyle \sum_{i=1}^{k}\langle v_i|w_{k+1}\rangle|v_i\rangle||}∣vk+1⟩=∣∣ ∣wk+1⟩−i=1∑k⟨vi∣wk+1⟩∣vi⟩∣∣∣wk+1⟩−i=1∑k⟨vi∣wk+1⟩∣vi⟩,(注意后面只有kkk项.)
[2.1.5]
4.特征值与特征向量
4.1定义
一个特征值可以对应无数个特征向量,这些特征向量组成了特征值λ\lambdaλ的本征空间。
4.2特征值的性质:
对于任意矩阵AAA,有An∣v⟩=λn∣v⟩.A^n|v\rangle = \lambda^n|v\rangle.An∣v⟩=λn∣v⟩.其中∣v⟩|v\rangle∣v⟩是特征值λ\lambdaλ所对应的特征向量.
4.3Pauli矩阵的特征值
除了III的特征值为1外,其余都是±1\pm1±1。
关于各种特殊矩阵的特征值与特征向量将在后续文章中给出。
5.对角表示:
已知矩阵AAA的特征值是λi\lambda_iλi,λi\lambda_iλi对应的特征向量分别为∣vi⟩|v_i\rangle∣vi⟩(重根要列出λi\lambda_iλi的本征空间的一组最大线性无关组),将∣vi⟩|v_i\rangle∣vi⟩标准正交化,得到向量∣i⟩|i\rangle∣i⟩.
如果矩阵AAA可以表示为∑iλi∣i⟩⟨i∣\displaystyle \sum_i\lambda_i|i\rangle\langle i|i∑λi∣i⟩⟨i∣的形式,则称AAA可对角化。
可以证明, 此时向量∣i⟩|i\rangle∣i⟩仍是AAA的特征向量.
可以证明,AAA可以对角化的充要条件是AAA是正规(normal)的。
[2.1.6]
6.伴随算子
AAA的伴随算子的矩阵表示是AAA的矩阵表示的自共轭矩阵.记为A†A^{\dagger}A†.且伴随算子有关系:[定义式]
(∣v⟩,A∣w⟩)=(A†∣v⟩,∣w⟩).(|v\rangle,A|w\rangle) = (A^{\dagger}|v\rangle,|w\rangle).(∣v⟩,A∣w⟩)=(A†∣v⟩,∣w⟩).
伴随矩阵性质:
(1)(1)(1).(A†)†=A(A^{\dagger})^{\dagger} = A(A†)†=A
(2)(2)(2).(⟨v∣w⟩)†=(⟨v∣w⟩)∗(\langle v|w\rangle)^{\dagger} = (\langle v|w\rangle)^{*}(⟨v∣w⟩)†=(⟨v∣w⟩)∗
(3)(3)(3).(∣v⟩⟨w∣)†=(∣w⟩⟨v∣)(|v\rangle\langle w|)^{\dagger} =(|w\rangle\langle v|)(∣v⟩⟨w∣)†=(∣w⟩⟨v∣)
(4)(4)(4).(A1A2...An)†=An†An−1†...A1†(A_1A_2...A_n)^{\dagger} = A_n^{\dagger}A_{n-1}^{\dagger}...A_1^{\dagger}(A1A2...An)†=An†An−1†...A1†
(5)(5)(5).[ABCD]†=\left[\begin{matrix}A&B\\C&D\end{matrix}\right]^{\dagger} =[ACBD]†= [A†C†B†D†]\left[\begin{matrix}{A^{\dagger}}& {C^{\dagger}}\\ {B^{\dagger}}& {D^{\dagger}}\end{matrix}\right][A†B†C†D†](分块矩阵)
8.正规矩阵和Hermite矩阵
对于线性算子AAA,如果AA†=A†AAA^{\dagger} =A^{\dagger}AAA†=A†A,则称AAA是正规算子,其矩阵表示称为正规矩阵.
正规矩阵性质:一个矩阵是正规矩阵当且仅当它可以对角表示。
对于线性算子AAA,如果A†=AA^{\dagger} =AA†=A,则称AAA是Hermite算子,其矩阵表示称为Hermite矩阵.
正规矩阵与Hermite矩阵的关系:一个正规矩阵是Hermite的,当且仅当它的特征值全是实数。
Hermite矩阵性质:
(1).(1).(1). Hermite的特征值都是实数.
(2).(2).(2).Hermite矩阵的具有不同特征值的特征向量必须正交.[证明考虑⟨v∣A∣w⟩\langle v|A|w\rangle⟨v∣A∣w⟩及其伴随矩阵]
(3).(3).(3).对于任意一个矩阵AAA都可以分解为A=B+iCA = B+iCA=B+iC,其中B=12(A+A†),C=12i(A−A†)B = \frac{1}{2}(A+A^{\dagger}),C = \frac{1}{2i}(A-A^{\dagger})B=21(A+A†),C=2i1(A−A†),且B,CB,CB,C都是Hermite矩阵。
9.酉算子
对于线性算子UUU,如果UU†=U†U=IUU^{\dagger} =U^{\dagger}U = IUU†=U†U=I,则称UUU是酉算子,其矩阵表示称为酉矩阵.
酉矩阵的性质:
(1).(1).(1).酉矩阵是正规矩阵。
(2).(∣v⟩,⟨w∣)=(U∣v⟩,U⟨w∣)(2).(|v\rangle,\langle w|) = (U|v\rangle,U\langle w|)(2).(∣v⟩,⟨w∣)=(U∣v⟩,U⟨w∣)
(3)(3)(3).酉矩阵的特征值模都是1.
(4).(4).(4).酉矩阵都是过渡矩阵,即存在两组标准正交基∣wi⟩|w_i \rangle∣wi⟩和$|v_i\rangle ,使得,使得,使得U = \displaystyle \sum_i|w_i\rangle\langle v_i|$.[可利用酉矩阵的性质2证明]
(5).(5).(5).酉矩阵的乘积也是酉矩阵。[通过性质4很好证明]
10.投影算子:
10.1定义
设线性空间VVV的一组标准正交基为∣1⟩,∣2⟩...∣d⟩|1\rangle,|2\rangle...|d\rangle∣1⟩,∣2⟩...∣d⟩,从中选取k(k≤d)k(k\leq d)k(k≤d)个向量,定义具有形如P≡∑i=1k∣i⟩⟨i∣P\equiv \displaystyle \sum_{i=1}^{k}|i\rangle\langle i|P≡i=1∑k∣i⟩⟨i∣的矩阵称为投影矩阵.
其对应的线性算子称为投影(projection)算子。
10.2投影算子的意义
在10.1的情况下,设线性空间VVV的算子有元素∣v⟩|v\rangle∣v⟩,显然P∣v⟩P|v\rangleP∣v⟩即将元素∣v⟩|v\rangle∣v⟩投影到向量∣1⟩,∣2⟩...∣k⟩|1\rangle,|2\rangle...|k\rangle∣1⟩,∣2⟩...∣k⟩所张成的子空间。定义Q=I−PQ=I-PQ=I−P,显然QQQ也是投影算子,且作用为将向量∣v⟩|v\rangle∣v⟩投影到向量∣k+1⟩,∣k+2⟩..∣d⟩|k+1\rangle,|k+2\rangle..|d\rangle∣k+1⟩,∣k+2⟩..∣d⟩所张成的空间。称QQQ为PPP的正交补。
根据此,设MMM是VVV到VVV的正规算子,有QMP=QM†P=0QMP =QM^{\dagger}P= 0QMP=QM†P=0.
10.3****投影算子的性质:
(1).(1).(1).投影算子都是Hermite矩阵.
(2).(2).(2).投影算子的特征值都是非0即1.
(3).(3).(3).投影算子是幂等矩阵。
(4)(4)(4).正规算子MMM是投影算子的充要条件为M2=MM^2=MM2=M.
11.半正定算子
11.1 定义
对于任意向量∣v⟩|v\rangle∣v⟩,如果有⟨v∣A∣v⟩≥0\langle v|A|v\rangle \geq0⟨v∣A∣v⟩≥0,则称A为半正定(positive)算子.
对于任意向量∣v⟩|v\rangle∣v⟩,如果有⟨v∣A∣v⟩>0\langle v|A|v\rangle >0⟨v∣A∣v⟩>0,则称A为正定(positive definite)算子.
本文主要研究半正定算子。
11.2性质
(1).(1).(1).特征值非负。
(2).(2).(2).P2=P\sqrt{P^2} =PP2=P[证明参见13算子函数的定义]
(3).(3).(3).必定是Hermite算子。[证明参见Hermite的性质3]
(4)(4)(4).对于任意线性算子AAA,A†AA^{\dagger}AA†A和AA†AA^{\dagger}AA†是半正定的.[考虑整体A∣v⟩A|v\rangleA∣v⟩]
[2.1.7]
12.张量积
12.1张量积的计算公式:
A⊗B=[A11BA12B...A1nBA21BA22B...A2nB⋮⋮⋮⋮Am1BAm2B...AmnB]A\otimes B = \left[\begin{matrix}A_{11}B&A_{12}B&...&A_{1n}B\\A_{21}B&A_{22}B&...&A_{2n}B\\\vdots &\vdots&\vdots&\vdots\\A_{m1}B&A_{m2}B&...&A_{mn}B\end{matrix}\right]A⊗B=⎣⎢⎢⎢⎡A11BA21B⋮Am1BA12BA22B⋮Am2B......⋮...A1nBA2nB⋮AmnB⎦⎥⎥⎥⎤
若AAA是m×nm\times nm×n矩阵,BBB是p×qp\times qp×q矩阵,则A⊗BA\otimes BA⊗B是mp×nqmp\times nqmp×nq矩阵.
12.2张量积的意义:
设线性空间VVV是∣v⟩|v\rangle∣v⟩的集合,WWW是∣w⟩|w\rangle∣w⟩的集合,则定义V⊗WV\otimes WV⊗W是∣v⟩⊗∣w⟩|v\rangle \otimes|w\rangle∣v⟩⊗∣w⟩及其线性组合的集合。
可以证明,集合V⊗W={∣vi⟩⊗∣wj⟩∣ ∣v⟩∈V,∣w⟩∈W}V\otimes W=\{|v_i\rangle\otimes|w_j\rangle |\ |v\rangle\in V,|w\rangle \in W\}V⊗W={∣vi⟩⊗∣wj⟩∣ ∣v⟩∈V,∣w⟩∈W}
可以证明, 若∣i⟩|i\rangle∣i⟩是VVV的基向量,∣j⟩|j\rangle∣j⟩是WWW的基向量,则∣i⟩⊗∣j⟩|i\rangle\otimes|j\rangle∣i⟩⊗∣j⟩是V⊗WV\otimes WV⊗W的基向量.
12.3张量积的性质:
(1).(1).(1).张量积对于运算∗, T, †^*,\ ^T,\ ^{\dagger}∗, T, †都是可分配的.
即(A⊗B)∗=A∗⊗B∗,(A⊗B)T=AT⊗BT,(A⊗B)†=A†⊗B†.(A\otimes B)^* = A^*\otimes B^*,(A\otimes B)^T = A^T\otimes B^T,(A\otimes B)^{\dagger} = A^{\dagger}\otimes B^{\dagger}.(A⊗B)∗=A∗⊗B∗,(A⊗B)T=AT⊗BT,(A⊗B)†=A†⊗B†.
(2).(2).(2).线性性质:(kA+uB)⊗C=k(A⊗C)+u(B⊗C)(kA+uB) \otimes C = k(A\otimes C)+u(B\otimes C)(kA+uB)⊗C=k(A⊗C)+u(B⊗C).
(3).(3).(3).乘法性质:(A⊗B)(C⊗D)=AC⊗BD(A\otimes B)(C\otimes D) = AC\otimes BD(A⊗B)(C⊗D)=AC⊗BD
(4).(4).(4).若A,BA,BA,B都是酉的,则A⊗BA\otimes BA⊗B也是酉的。这条性质可以推广到(半)正定算子,投影算子,Hermite算子,正规算子.
[2.1.8]
13.算子函数
若fff是一个复数域上的映射,在正规矩阵A=∑ia∣i⟩⟨i∣A = \displaystyle \sum_{i}a|i\rangle\langle i|A=i∑a∣i⟩⟨i∣上可定义算子函数f(A)≡∑if(a)∣i⟩⟨i∣.f(A) \equiv \displaystyle \sum_{i}f(a)|i\rangle\langle i|.f(A)≡i∑f(a)∣i⟩⟨i∣.
14.矩阵的迹
14.1 定义
矩阵的迹是这样一个函数:tr(A)=∑iAiitr(A) = \displaystyle \sum_{i}A_{ii}tr(A)=i∑Aii即矩阵的对角线元素之和。
容易证明,Pauli矩阵的迹都是0.
14.2性质
(1).(1).(1).线性性质:tr(kA+uB)=ktr(A)+utr(B)tr(kA+uB) = ktr(A)+utr(B)tr(kA+uB)=ktr(A)+utr(B)
(2).(2).(2).循环性质: tr(AB)=tr(BA)tr(AB) = tr(BA)tr(AB)=tr(BA)[证明考虑矩阵展开]
(3).(3).(3).设∣v⟩|v\rangle∣v⟩是单位向量,则tr(A∣v⟩⟨v∣)=⟨v∣A∣v⟩.tr(A|v\rangle \langle v|) = \langle v|A|v\rangle.tr(A∣v⟩⟨v∣)=⟨v∣A∣v⟩.[证明考虑迹的性质2]
[2.1.9]
15.对易式与反对易式
15.1 定义式
对易式[A,B]=AB−BA[A,B] = AB-BA[A,B]=AB−BA
反对易式{A,B}=AB+BA\{A,B\} = AB+BA{A,B}=AB+BA
如果[A,B]=0[A,B] = 0[A,B]=0,称AAA与BBB是可对易的.
15.2性质
(1).(1).(1).AB=12([A,B]+{A,B})AB = \frac{1}{2}([A,B]+\{A,B\})AB=21([A,B]+{A,B})
(2)(2)(2).[A,B]=−[B,A][A,B] = -[B,A][A,B]=−[B,A]
(3).(3).(3).[A,B]†=[B†,A†][A,B]^{\dagger} = [B^{\dagger},A^{\dagger}][A,B]†=[B†,A†]
15.3 任意Pauli矩阵的乘积
定义三元函数εjkl\varepsilon_{jkl}εjkl:
当jkljkljkl中有相同的元素,返回000.
当jkljkljkl各不相同且jkljkljkl的逆序数为偶数,返回111.
当jkljkljkl各不相同且jkljkljkl的逆序为奇数,返回−1-1−1.
可以验证,对于pauli矩阵:
(1).(1).(1).{σj,σk}=0\{\sigma_j,\sigma_k\} = 0{σj,σk}=0
(2).(2).(2).[σj,σk]=2i∑l=03εjklσl[\sigma_j,\sigma_k] =2i\displaystyle \sum_{l=0}^{3}\varepsilon_{jkl}\sigma_l[σj,σk]=2il=0∑3εjklσl
(3).(3).(3).σi2=I\sigma_i^2 = Iσi2=I
根据以上三个条件,可以得到
σjσk=δjkI+i∑l=03εjklσl.\sigma_j\sigma_k = \delta_{jk}I+\displaystyle i\sum_{l=0}^{3}\varepsilon_{jkl}\sigma_l.σjσk=δjkI+il=0∑3εjklσl.
[2.1.10]
16.极式分解
分解步骤
对于任意矩阵AAA,定义矩阵J=A†AJ = \sqrt{A^{\dagger}A}J=A†A
于是JJJ是一个半正定算子,可以进行谱分解为∑iλi∣i⟩⟨i∣.\displaystyle \sum_{i}\lambda_i|i\rangle\langle i|.i∑λi∣i⟩⟨i∣.λi\lambda_iλi是JJJ的特征向量。
只考虑不为0的λi\lambda_iλi,
记∣ei⟩=1λiA∣i⟩|e_i\rangle = \frac{1}{\lambda_i}A|i\rangle∣ei⟩=λi1A∣i⟩
将向量组∣ei⟩|e_i\rangle∣ei⟩扩展为标准正交向量组,
记酉矩阵U=∑i∣ei⟩⟨i∣U = \displaystyle \sum_{i}|e_i\rangle\langle i|U=i∑∣ei⟩⟨i∣
于是A∣i⟩=UJ∣i⟩A|i\rangle = UJ|i\rangleA∣i⟩=UJ∣i⟩
故AAA可以分解为UJUJUJ.
称为AAA的左极式分解.
同理易求出AAA的右极式分解A=KU,K=AA†A = KU,K = \sqrt{AA^{\dagger}}A=KU,K=AA†
17.奇异值分解
17.1 相似对角化
对于正规矩阵AAA,有谱分解A=∑iλi∣i⟩⟨i∣A = \displaystyle \sum_{i}\lambda_i|i\rangle\langle i|A=i∑λi∣i⟩⟨i∣,
构造矩阵TTT,使TTT的第iii列是列向量∣i⟩|i\rangle∣i⟩.显然TT†=ITT^{\dagger} = ITT†=I
构造矩阵DDD,使得Dij=λiδij.D_{ij} = \lambda_i\delta_{ij}.Dij=λiδij.
于是可以证明TDT−1=TDT†=∑iλi∣i⟩⟨i∣=ATDT^{-1} = TDT^{\dagger} = \displaystyle \sum_{i}\lambda_i|i\rangle\langle i| = ATDT−1=TDT†=i∑λi∣i⟩⟨i∣=A
称DDD为AAA的相似标准型,这便是谱分解与相似对角化的关系。
17.2奇异值分解
先将矩阵AAA左极式分解,得A=SJA = SJA=SJ
又JJJ可谱分解,所以JJJ可以相似对角化,设J=TDT−1J = TDT^{-1}J=TDT−1
令U=ST,V=T−1U = ST,V = T^{-1}U=ST,V=T−1 .显然U,VU,VU,V都是酉矩阵。
所以A=UDVA = UDVA=UDV,称之为AAA的奇异值分解.
另外作者知乎ID同名,欢迎关注.
本文完