数学笔记(四)线性代数知识点总结

本文详细介绍了线性算子、矩阵表示、过渡矩阵、特征值与特征向量、对角表示、伴随算子、投影算子、半正定算子、张量积等相关概念,并探讨了它们在量子计算与量子信息领域的应用。通过实例解释了这些概念如何在量子系统的描述中发挥作用,包括酉算子、正规矩阵、Hermite矩阵和奇异值分解等。此外,还讨论了内积、Gram-Schmidt正交化和算子函数等基础理论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在最前面:本文是阅读《Quantum Computation and Quantum Information》时所做,作者之前略微学过线性代数,但了解不深,阅读第二章第一节线性代数部分时遇到了很多困难,今将学习笔记发布给大家参阅,若有疏漏欢迎理性讨论,希望能给大家带来一点启发。

[2.1.2] (这是书上的相关内容的对应章节)

1.线性算子与矩阵表示的转换:

1.1 一般情况

线性算子本身与坐标系无关,但要将其矩阵联系起来,需要建立坐标系,而建立坐标系首先要确定基。

给定输入基∣vi⟩|v_i\ranglevi和输出基∣wi⟩|w_i\ranglewi,则有以下确定线性变换的矩阵表示的两种方法:

(1).直接变换法:

设线性算子AAA有映射关系A∣vj⟩=∣w⟩=∑iAij∣wi⟩A|v_j\rangle=|w\rangle=\displaystyle\sum_iA_{ij}|w_i\rangleAvj=w=iAijwi,则用于线性表示∣w⟩|w\ranglew的系数AijA_{ij}Aij即为表示线性算子的矩阵的第iii行第jjj列。

(2).外积计算法:

在(1)的基础下,如果∣wi⟩|w_i \ranglewi​和 ∣vi⟩|v_i\ranglevi​是两组标准正交基时,

由完备性关系:A=IWAIV=∑ij∣wi⟩⟨wi∣A∣vj⟩⟨vi∣=∑i⟨wi∣A∣vj⟩∣wi⟩ ⟨vi∣A = I_WAI_V=\displaystyle \sum_{ij} |w_i\rangle\langle w_i|A|v_j\rangle\langle v_i| = \displaystyle \sum_i \langle w_i|A|v_j\rangle |w_i\rangle\ \langle v_i|A=IWAIV=ijwiwiAvjvi=iwiAvjwi vi

可以证明,$A_{ji} = \langle w_i|A|v_j\rangle ,,,A_{ji}表示表示A的​矩阵的第的​矩阵的第j行第行第i$列的元素。

1.2 过渡矩阵

1.1的情况下,若线性算子AAA是这么一个矩阵:A∣vi⟩=∣wi⟩A|v_i\rangle = |w_i\rangleAvi=wi,即AAA将一组基一一映射到另一组基,称AAA​​的矩阵表示为过渡矩阵.

可以证明,当∣wi⟩|w_i \ranglewi和$|v_i\rangle $是两组标准正交基时,过渡矩阵可以这样得到:

A=∑i∣wi⟩⟨vi∣A = \displaystyle \sum_i|w_i\rangle\langle v_i|A=iwivi

1.3恒等算子

恒等算子III定义为I∣v⟩≡∣v⟩I|v\rangle \equiv |v\rangleIvv.在输入基和输出基相同的情况下,III的矩阵表示可以为EEE(即单位矩阵,除对角线全为1外其余均为0).

1.4二维复向量空间上的重要的外积:

∣0⟩⟨0∣=[1000]|0\rangle\langle0| = \left[ \begin{matrix}1&0\\0&0\end{matrix}\right ]00=[1000]

∣0⟩⟨1∣=[0100]|0\rangle\langle1| = \left[ \begin{matrix}0&1\\0&0\end{matrix}\right ]01=[0010]​​

∣1⟩⟨0∣=[0010]|1\rangle\langle0| = \left[ \begin{matrix}0&0\\1&0\end{matrix}\right ]10=[0100]

∣1⟩⟨1∣=[0001]|1\rangle\langle1| = \left[ \begin{matrix}0&0\\0&1\end{matrix}\right ]11=[0001]

[2.1.4]

2.内积

Hilbert空间定义内积应满足三个条件:

(1).线性性质: (∣v⟩,∑iλi∣wi⟩)=∑iλi(∣v⟩,∣wi⟩).(|v\rangle,\displaystyle \sum_{i}\lambda_i|w_i\rangle) =\displaystyle \sum_{i}\lambda_i(|v\rangle,|w_i\rangle).(v,iλiwi)=iλi(v,wi).

(2).交换共轭:(∣v⟩,∣w⟩)=(∣w⟩,∣v⟩)∗.(|v\rangle,|w\rangle) = (|w\rangle,|v\rangle)^{*}.(v,w)=(w,v).

(3).非负性:(∣v⟩,∣v⟩)≥0.(|v\rangle,|v\rangle)\geq0.(v,v)0.

3.Gram-Schmidt 正交化递推公式

(1).∣v1⟩=∣w1⟩|v_1\rangle = |w_1\ranglev1=w1

(2).∣vk+1⟩=∣wk+1⟩−∑i=1k⟨vi∣wk+1⟩∣vi⟩∣∣ ∣wk+1⟩−∑i=1k⟨vi∣wk+1⟩∣vi⟩∣∣|v_{k+1}\rangle = \frac{|w_{k+1}\rangle - \displaystyle \sum_{i=1}^{k}\langle v_i|w_{k+1}\rangle|v_i\rangle}{||\ |w_{k+1}\rangle - \displaystyle \sum_{i=1}^{k}\langle v_i|w_{k+1}\rangle|v_i\rangle||}vk+1= wk+1i=1kviwk+1viwk+1i=1kviwk+1vi​,(注意后面只有kkk项.)

[2.1.5]

4.特征值与特征向量

4.1定义

一个特征值可以对应无数个特征向量,这些特征向量组成了特征值λ\lambdaλ​​的本征空间。

4.2特征值的性质:

对于任意矩阵AAA,有An∣v⟩=λn∣v⟩.A^n|v\rangle = \lambda^n|v\rangle.Anv=λnv.其中∣v⟩|v\ranglev是特征值λ\lambdaλ所对应的特征向量.

4.3Pauli矩阵的特征值

除了III的特征值为1外,其余都是±1\pm1±1

关于各种特殊矩阵的特征值与特征向量将在后续文章中给出。

5.对角表示:

已知矩阵AAA​的特征值是λi\lambda_iλi​,λi\lambda_iλi​对应的特征向量分别为∣vi⟩|v_i\ranglevi​(重根要列出λi\lambda_iλi的本征空间的一组最大线性无关组),将∣vi⟩|v_i\ranglevi​标准正交化,得到向量∣i⟩|i\ranglei​​​.

如果矩阵AAA​可以表示为∑iλi∣i⟩⟨i∣\displaystyle \sum_i\lambda_i|i\rangle\langle i|iλiii​​的形式,则称AAA​可对角化。

可以证明, 此时向量∣i⟩|i\ranglei​仍是AAA​的特征向量.

可以证明,AAA​可以对角化的充要条件是AAA​​是正规(normal)的。

[2.1.6]

6.伴随算子

AAA的伴随算子的矩阵表示是AAA的矩阵表示的自共轭矩阵.记为A†A^{\dagger}A​.且伴随算子有关系:[定义式]

(∣v⟩,A∣w⟩)=(A†∣v⟩,∣w⟩).(|v\rangle,A|w\rangle) = (A^{\dagger}|v\rangle,|w\rangle).(v,Aw)=(Av,w).

伴随矩阵性质:

(1)(1)(1).(A†)†=A(A^{\dagger})^{\dagger} = A(A)=A

(2)(2)(2).(⟨v∣w⟩)†=(⟨v∣w⟩)∗(\langle v|w\rangle)^{\dagger} = (\langle v|w\rangle)^{*}(vw)=(vw)

(3)(3)(3)​​.(∣v⟩⟨w∣)†=(∣w⟩⟨v∣)(|v\rangle\langle w|)^{\dagger} =(|w\rangle\langle v|)(vw)=(wv)

(4)(4)(4).(A1A2...An)†=An†An−1†...A1†(A_1A_2...A_n)^{\dagger} = A_n^{\dagger}A_{n-1}^{\dagger}...A_1^{\dagger}(A1A2...An)=AnAn1...A1

(5)(5)(5)​.[ABCD]†=\left[\begin{matrix}A&B\\C&D\end{matrix}\right]^{\dagger} =[ACBD]= [A†C†B†D†]\left[\begin{matrix}{A^{\dagger}}& {C^{\dagger}}\\ {B^{\dagger}}& {D^{\dagger}}\end{matrix}\right][ABCD]​(分块矩阵)

8.正规矩阵和Hermite​矩阵

对于线性算子AAA​​,如果AA†=A†AAA^{\dagger} =A^{\dagger}AAA=AA​​,则称AAA​​​是正规算子,其矩阵表示称为正规矩阵.

正规矩阵性质:一个矩阵是正规矩阵当且仅当它可以对角表示。

对于线性算子AAA​,如果A†=AA^{\dagger} =AA=A​,则称AAA​是Hermite算子,其矩阵表示称为Hermite矩阵.

正规矩阵与Hermite矩阵的关系:一个正规矩阵是Hermite的,当且仅当它的特征值全是实数。

Hermite矩阵性质:

(1).(1).(1).​​​​ Hermite的特征值都是实数.

(2).(2).(2).​​​Hermite矩阵的具有不同特征值的特征向量必须正交.[证明考虑⟨v∣A∣w⟩\langle v|A|w\ranglevAw​及其伴随矩阵]

(3).(3).(3).对于任意一个矩阵AAA都可以分解为A=B+iCA = B+iCA=B+iC,其中B=12(A+A†),C=12i(A−A†)B = \frac{1}{2}(A+A^{\dagger}),C = \frac{1}{2i}(A-A^{\dagger})B=21(A+A),C=2i1(AA),且B,CB,CB,C都是Hermite矩阵。

9.酉算子

对于线性算子UUU​​​​,如果UU†=U†U=IUU^{\dagger} =U^{\dagger}U = IUU=UU=I​​​​,则称UUU​​​​是酉算子,其矩阵表示称为酉矩阵.

酉矩阵的性质:

(1).(1).(1).酉矩阵是正规矩阵。

(2).(∣v⟩,⟨w∣)=(U∣v⟩,U⟨w∣)(2).(|v\rangle,\langle w|) = (U|v\rangle,U\langle w|)(2).(v,w)=(Uv,Uw)

(3)(3)(3).酉矩阵的特征值模都是1.

(4).(4).(4).​酉矩阵都是过渡矩阵,即存在两组标准正交基∣wi⟩|w_i \ranglewi​和$|v_i\rangle ​,使得​,使得使U = \displaystyle \sum_i|w_i\rangle\langle v_i|$​​.[可利用酉矩阵的性质2证明]

(5).(5).(5).​酉矩阵的乘积也是酉矩阵。[通过性质4很好证明]

10.投影算子:

10.1定义

设线性空间VVV的一组标准正交基为∣1⟩,∣2⟩...∣d⟩|1\rangle,|2\rangle...|d\rangle1,2...d,从中选取k(k≤d)k(k\leq d)k(kd)个向量,定义具有形如P≡∑i=1k∣i⟩⟨i∣P\equiv \displaystyle \sum_{i=1}^{k}|i\rangle\langle i|Pi=1kii的矩阵称为投影矩阵.

其对应的线性算子称为投影(projection)算子。

10.2投影算子的意义

10.1的情况下,设线性空间VVV​的算子有元素∣v⟩|v\ranglev​,显然P∣v⟩P|v\ranglePv​即将元素∣v⟩|v\ranglev​投影到向量∣1⟩,∣2⟩...∣k⟩|1\rangle,|2\rangle...|k\rangle1,2...k​所张成的子空间。定义Q=I−PQ=I-PQ=IP​,显然QQQ​也是投影算子,且作用为将向量∣v⟩|v\ranglev​投影到向量∣k+1⟩,∣k+2⟩..∣d⟩|k+1\rangle,|k+2\rangle..|d\ranglek+1,k+2..d​所张成的空间。称QQQPPP正交补

根据此,设MMM​是VVV​到VVV​的正规算子,有QMP=QM†P=0QMP =QM^{\dagger}P= 0QMP=QMP=0​​.

10.3****投影算子的性质:

(1).(1).(1).​投影算子都是Hermite矩阵.

(2).(2).(2).​投影算子的特征值都是非0即1.

(3).(3).(3).​​投影算子是幂等矩阵。

(4)(4)(4)​​.正规算子MMM​​是投影算子的充要条件为M2=MM^2=MM2=M​​​.

11.半正定算子

11.1 定义

对于任意向量∣v⟩|v\ranglev,如果有⟨v∣A∣v⟩≥0\langle v|A|v\rangle \geq0vAv0,则称A为半正定(positive)算子.

对于任意向量∣v⟩|v\ranglev​,如果有⟨v∣A∣v⟩>0\langle v|A|v\rangle >0vAv>0​​,则称A为正定(positive definite)算子.

本文主要研究半正定算子。

11.2性质

(1).(1).(1).特征值非负。

(2).(2).(2).P2=P\sqrt{P^2} =PP2=P​[证明参见13算子函数的定义]

(3).(3).(3).​必定是Hermite算子。[证明参见Hermite的性质3]

(4)(4)(4).对于任意线性算子AAA,A†AA^{\dagger}AAAAA†AA^{\dagger}AA​是半正定的.[考虑整体A∣v⟩A|v\rangleAv]

[2.1.7]

12.张量积

12.1张量积的计算公式:

A⊗B=[A11BA12B...A1nBA21BA22B...A2nB⋮⋮⋮⋮Am1BAm2B...AmnB]A\otimes B = \left[\begin{matrix}A_{11}B&A_{12}B&...&A_{1n}B\\A_{21}B&A_{22}B&...&A_{2n}B\\\vdots &\vdots&\vdots&\vdots\\A_{m1}B&A_{m2}B&...&A_{mn}B\end{matrix}\right]AB=A11BA21BAm1BA12BA22BAm2B.........A1nBA2nBAmnB

AAAm×nm\times nm×n矩阵,BBBp×qp\times qp×q矩阵,则A⊗BA\otimes BABmp×nqmp\times nqmp×nq矩阵.

12.2张量积的意义:

设线性空间VVV∣v⟩|v\ranglev​的集合,WWW∣w⟩|w\ranglew的集合,则定义V⊗WV\otimes WVW∣v⟩⊗∣w⟩|v\rangle \otimes|w\ranglevw及其线性组合的集合。

可以证明,集合V⊗W={∣vi⟩⊗∣wj⟩∣ ∣v⟩∈V,∣w⟩∈W}V\otimes W=\{|v_i\rangle\otimes|w_j\rangle |\ |v\rangle\in V,|w\rangle \in W\}VW={viwj vV,wW}

可以证明, 若∣i⟩|i\rangleiVVV的基向量,∣j⟩|j\ranglejWWW的基向量,则∣i⟩⊗∣j⟩|i\rangle\otimes|j\rangleijV⊗WV\otimes WVW的基向量.

12.3张量积的性质

(1).(1).(1).张量积对于运算∗, T, †^*,\ ^T,\ ^{\dagger}, T, 都是可分配的.

(A⊗B)∗=A∗⊗B∗,(A⊗B)T=AT⊗BT,(A⊗B)†=A†⊗B†.(A\otimes B)^* = A^*\otimes B^*,(A\otimes B)^T = A^T\otimes B^T,(A\otimes B)^{\dagger} = A^{\dagger}\otimes B^{\dagger}.(AB)=AB,(AB)T=ATBT,(AB)=AB.

(2).(2).(2).​线性性质:(kA+uB)⊗C=k(A⊗C)+u(B⊗C)(kA+uB) \otimes C = k(A\otimes C)+u(B\otimes C)(kA+uB)C=k(AC)+u(BC)​​.

(3).(3).(3).​乘法性质:(A⊗B)(C⊗D)=AC⊗BD(A\otimes B)(C\otimes D) = AC\otimes BD(AB)(CD)=ACBD

(4).(4).(4).A,BA,BA,B都是酉的,则A⊗BA\otimes BAB也是酉的。这条性质可以推广到(半)正定算子,投影算子,Hermite算子,正规算子.
[2.1.8]
13.算子函数

fff是一个复数域上的映射,在正规矩阵A=∑ia∣i⟩⟨i∣A = \displaystyle \sum_{i}a|i\rangle\langle i|A=iaii上可定义算子函数f(A)≡∑if(a)∣i⟩⟨i∣.f(A) \equiv \displaystyle \sum_{i}f(a)|i\rangle\langle i|.f(A)if(a)ii.

14.矩阵的迹

14.1 定义

矩阵的迹是这样一个函数:tr(A)=∑iAiitr(A) = \displaystyle \sum_{i}A_{ii}tr(A)=iAii​即矩阵的对角线元素之和。

容易证明,Pauli矩阵的迹都是0.

14.2性质

(1).(1).(1).线性性质:tr(kA+uB)=ktr(A)+utr(B)tr(kA+uB) = ktr(A)+utr(B)tr(kA+uB)=ktr(A)+utr(B)

(2).(2).(2).循环性质: tr(AB)=tr(BA)tr(AB) = tr(BA)tr(AB)=tr(BA)[证明考虑矩阵展开]

(3).(3).(3).​设∣v⟩|v\ranglev是单位向量,则tr(A∣v⟩⟨v∣)=⟨v∣A∣v⟩.tr(A|v\rangle \langle v|) = \langle v|A|v\rangle.tr(Avv)=vAv.​[证明考虑迹的性质2]​​
[2.1.9]
15.对易式与反对易式

15.1 定义式

对易式[A,B]=AB−BA[A,B] = AB-BA[A,B]=ABBA

反对易式{A,B}=AB+BA\{A,B\} = AB+BA{A,B}=AB+BA

如果[A,B]=0[A,B] = 0[A,B]=0​​,称AAA​与BBB​是可对易的.

15.2性质

(1).(1).(1).AB=12([A,B]+{A,B})AB = \frac{1}{2}([A,B]+\{A,B\})AB=21([A,B]+{A,B})

(2)(2)(2)​.[A,B]=−[B,A][A,B] = -[B,A][A,B]=[B,A]

(3).(3).(3).[A,B]†=[B†,A†][A,B]^{\dagger} = [B^{\dagger},A^{\dagger}][A,B]=[B,A]

15.3 任意Pauli矩阵的乘积

定义三元函数εjkl\varepsilon_{jkl}εjkl:

jkljkljkl​中有相同的元素,返回000.

jkljkljkl​​各不相同且jkljkljkl​​的逆序数为偶数,返回111​​.

jkljkljkl​​​各不相同且jkljkljkl​​​的逆序为奇数,返回−1-11​​​.

可以验证,对于pauli矩阵:

(1).(1).(1).{σj,σk}=0\{\sigma_j,\sigma_k\} = 0{σj,σk}=0

(2).(2).(2).[σj,σk]=2i∑l=03εjklσl[\sigma_j,\sigma_k] =2i\displaystyle \sum_{l=0}^{3}\varepsilon_{jkl}\sigma_l[σj,σk]=2il=03εjklσl

(3).(3).(3).σi2=I\sigma_i^2 = Iσi2=I

根据以上三个条件,可以得到

σjσk=δjkI+i∑l=03εjklσl.\sigma_j\sigma_k = \delta_{jk}I+\displaystyle i\sum_{l=0}^{3}\varepsilon_{jkl}\sigma_l.σjσk=δjkI+il=03εjklσl.
[2.1.10]
16.极式分解

分解步骤

对于任意矩阵AAA​,定义矩阵J=A†AJ = \sqrt{A^{\dagger}A}J=AA

于是JJJ​​​是一个半正定算子,可以进行谱分解为∑iλi∣i⟩⟨i∣.\displaystyle \sum_{i}\lambda_i|i\rangle\langle i|.iλiii.λi\lambda_iλi​是JJJ​的特征向量。

只考虑不为0的λi\lambda_iλi,

∣ei⟩=1λiA∣i⟩|e_i\rangle = \frac{1}{\lambda_i}A|i\rangleei=λi1Ai

将向量组∣ei⟩|e_i\rangleei扩展为标准正交向量组,

记酉矩阵U=∑i∣ei⟩⟨i∣U = \displaystyle \sum_{i}|e_i\rangle\langle i|U=ieii

于是A∣i⟩=UJ∣i⟩A|i\rangle = UJ|i\rangleAi=UJi

AAA可以分解为UJUJUJ.

称为AAA的左极式分解.

同理易求出AAA​的右极式分解A=KU,K=AA†A = KU,K = \sqrt{AA^{\dagger}}A=KU,K=AA

17.奇异值分解

17.1 相似对角化

对于正规矩阵AAA,有谱分解A=∑iλi∣i⟩⟨i∣A = \displaystyle \sum_{i}\lambda_i|i\rangle\langle i|A=iλiii​,

构造矩阵TTT​​,使TTT的第iii列是列向量∣i⟩|i\ranglei​.显然TT†=ITT^{\dagger} = ITT=I

构造矩阵DDD,使得Dij=λiδij.D_{ij} = \lambda_i\delta_{ij}.Dij=λiδij.

于是可以证明TDT−1=TDT†=∑iλi∣i⟩⟨i∣=ATDT^{-1} = TDT^{\dagger} = \displaystyle \sum_{i}\lambda_i|i\rangle\langle i| = ATDT1=TDT=iλiii=A

DDDAAA​​的相似标准型,这便是谱分解与相似对角化的关系。

17.2奇异值分解

先将矩阵AAA​左极式分解,得A=SJA = SJA=SJ

JJJ​可谱分解,所以JJJ可以相似对角化,设J=TDT−1J = TDT^{-1}J=TDT1

U=ST,V=T−1U = ST,V = T^{-1}U=ST,V=T1​​ .显然U,VU,VU,V都是酉矩阵。

所以A=UDVA = UDVA=UDV,称之为AAA的奇异值分解.
另外作者知乎ID同名,欢迎关注.
本文完

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值