- 博客(14)
- 收藏
- 关注
原创 泊松分布和指数分布
若某咖啡店顾客到达次数服从泊松分布(λ=10 人 / 小时),则顾客到达的时间间隔服从指数分布(平均间隔 1/λ=6 分钟)。表示事件发生的平均间隔时间(如 “平均每 20 分钟到达一位顾客” 则 λ=3 次 / 小时)。的概率”,这是指数分布区别于其他连续分布(如正态分布、伽马分布)的重要特征。是单位时间 / 空间内的平均事件发生率(如 “每小时 5 次”);均值等于方差,体现 “稀有事件” 的特性(如放射性衰变)。(或距离间隔),变量取值为非负实数(x≥0)。是区间内的平均事件次数(记作 μ=λt)。
2025-05-21 15:56:00
513
原创 常用抽样方法
抽样是一种统计技术,研究人员和数据分析人员可以通过研究某个群体的子集或样本来推断该群体的信息。抽样的核心挑战是选择准确反映群体的样本,同时确保结果可以毫无偏差地推广到群体。
2024-10-26 10:37:36
528
原创 Gurobi许可证过期如何解决-学术版
1.申请新的许可证学生可通过邮箱免费申请,新许可证有效期为半年,一年有两次申请机会 准备学籍证明和个人申请表两个材料,发送邮箱"[email protected]"即可。学籍证明通过学信网下载,个人申请表见附件2.更改系统环境配置删除旧的许可证对应的文件gurobi.lic(一般在gurobi根目录或者C盘文档里,找不到可直接在我的电脑里搜索)打开Gurobi控制台,输入新许可证即可:首先键入新许可证;随后输入.lic的存储位置(建议将该文件存在醒目位置,方便删减更新)3.更新到编程语言中(以
2024-10-10 09:13:32
1751
原创 C#调用Gurobi
1.1 右键“解决方案”>>添加>>项目引用 1.2 浏览找到gurobi安装文件夹,win64>>bin>>选中Gurobi95.NET.dll文件>>添加 1.3 点击确定 2.1 项目>>属性 2.2 生成>>目标平台调整为“x64” 3.1 在要编写模型的.cs文件的开始位置键入“using Gurobi”
2024-10-09 11:00:00
339
原创 博弈论应用
现代企业理论:契约、合同、企业代理等对策问题。利益共享一合作企业的对策。组织规则、激励机制设计。企业市场风险分析与防范。企业时长营销与竞争策略。环境保护与可持续发展。
2024-10-07 15:22:01
337
原创 常见的几种评价方法优缺点
由于涉及到模糊集理论和复杂的数学计算,Fuzzy AHP-TOPSIS 方法的计算复杂度较高,特别是在处理大规模问题时可能需要大量的计算资源。:Fuzzy AHP-TOPSIS 方法需要专家对各个因素进行模糊判断和评价,而专家的主观判断可能存在误差,影响决策结果的准确性。:通过模糊层次分析法确定权重和指标的重要性,同时利用模糊 TOPSIS 对备选方案进行排序,综合了专家主观判断和数学模型的优势。:该方法能够提供清晰的决策结果,能够解释备选方案的优劣,有助于决策者理解决策的依据。
2024-10-07 15:08:17
2045
原创 灰色关联分析(Grey Relational Analysis,GRA)
通过比较各个对象(备选方案)的发展趋势和模式,确定它们与参考对象之间的关联程度,进而进行排序和评价。在GRA中,将数据序列看作是一个。3. 排序和评价:根据关联度值,对各个对象进行排序,从而确定最优方案或者得到相应的评价结果。2. 序列关联度的计算:通过计算各个对象序列与参考对象序列之间的关联度,得到关联度值。则是通过比较序列之间的变化趋势,来判断它们之间的相似性或关联程度。1. 数据序列的标准化:将原始数据序列标准化,以便进行比较和分析。,其信息含量是不完全的、不确定的,因此称之为“灰色”。
2024-03-24 17:35:17
1328
原创 优劣解距离法(逼近理想解排序法,Technique for Order of Preference by Similarity to Ideal Solution,TOPSIS)
定义一种多属性决策分析方法,用于评价多个备选方案或选项,并确定最佳选择。 该方法基于欧几里得距离和最大最小规范化,将每个备选方案与最佳和最差解决方案之间的相似性进行比较,从而确定最优解。求解步骤确定决策矩阵:将评价对象的各个属性值组成一个决策矩阵,其中每行代表一个备选方案,每列代表一个评价指标。 归一化处理:对决策矩阵进行最大最小规范化,将各个指标的取值范围标准化到[0, 1]之间。 确定权重:对各个评价指标确定权重,通常可以使用加权平均或者层次分析法等方法确定权重。 计算正负理想解决
2024-03-24 16:48:52
348
原创 层次分析法(Analytic Hierarchy Process,AHP)
定义管理学中常用的决策分析工具之一,特别适用于多因素、多目标的决策问题。 由美国运筹学家托马斯·L·萨蒙(Thomas L. Saaty)于1970年代提出。 通过将问题分解成多个层次,然后对各个层次的因素进行比较和评估,最终得出决策的结果。基本思想将复杂的决策问题分解为多个层次,形成层次结构。 在层次结构中,最顶层是目标(Goal),中间层是准则(Criteria),最底层是备选方案(Alternatives)。 通过构建成对比较矩阵,对各层次的因素进行两两比较,确定其相对重要性或优先级
2024-03-24 16:17:39
574
原创 python学习2:数组常用函数
1.创建数组:list():创建一个空列表。 [ ]:直接使用方括号创建列表,并可在其中初始化元素。2.添加元素:append():向列表末尾添加一个元素。 extend():将一个列表的元素添加到另一个列表的末尾。 insert():在指定位置插入一个元素。3.删除元素:remove():移除列表中第一个匹配项。 pop():移除列表中指定位置的元素,并返回该元素。 del:删除列表中指定位置的元素。4.查找和排序:index():返回列表中指定值第一次出现的索引。 co
2024-03-21 16:47:04
423
1
原创 供应链内部协调~常用契约
能有效协调由单一供应商与单一零售商构成 的两级供应链。现实生活中的供应链往往涉及多个参与者,并且每个参与者对契约的偏好可能各不相同,因此,单一的契约理论往往难以在多级供应链中实现协调。收益共享契约。
2024-03-20 17:42:14
765
原创 背包问题常见的几种类型
背包问题的目标函数一般都是最大化放入背包中物品的总价值。常见类型有:0-1背包:每个物品只能选一次完全背包:每个物品可以选择无限次多重背包:每个物品的最多s[i]次混合背包:包含三种类型物品:选1次、s[i]次或无限次分组背包(多选择背包):一批物品分成n组,每组只能选一件装在背包中。相当于从每组中挑出一个物品组成0-1背包。多维背包:p种物品放入承重能力不同的m个背包种。多维多选择背包:n类(每类包含多种物品)物品放入m个有体积或承重差异的背包中。二维背包:又称二维费用
2021-12-19 17:14:06
1136
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人