- 博客(42)
- 收藏
- 关注
原创 深度学习Day-41:使用Word2vec实现文本分类
model.train() # 切换为训练模式optimizer.zero_grad() # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward() # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪optimizer.step() # 每一步自动更新# 记录acc与loss。
2024-11-28 03:07:10
862
原创 深度学习Day-40:调用Gensim库训练Word2Vec模型
任务: 安装Gensim库:1.1 对原始语料分词 选择《人民的名义》的小说原文作为语料,先采用jieba进行分词。这里是直接添加的自定义词汇,没有选择创建自定义词汇文件。代码输出为: 拿到了分词后的文件,在一般的NLP处理中,会需要去停用词。由于word2vec的算法依赖于上下文,而上下文有可能就是停词。因此对于word2vec,我们可以不用去停词,仅仅去掉一些标点符号,做一个简单的数据清洗。 现在我们可以直接读分词后的文件到内存。这里使用了w
2024-11-15 16:45:45
484
原创 深度学习Day-39:中文文本分类-Pytorch实现
model.train() # 切换为训练模式optimizer.zero_grad() # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward() # 反向传播torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1) # 梯度裁剪optimizer.step() # 每一步自动更新# 记录acc与loss。
2024-11-06 16:41:49
899
原创 深度学习Day-38:Pytorch文本分类入门
self.embedding = nn.EmbeddingBag(vocab_size, # 词典大小embed_dim, # 嵌入的维度这里定义TextClassificationModel模型,首先对文本进行嵌入,然后对句子嵌入之后的结果进行均值聚合。self.embedding.weight.data.uniform_(-initrange, initrange)这段代码是在 PyTorch 框架下用于初始化神经网络的词嵌入层(embedding layer)权重的一种方法。
2024-11-01 19:51:40
1121
2
原创 深度学习Day-37:NLP中的文本嵌入
1.2 定义填充函数self.fc = nn.Linear(embed_dim, 1) # 假设我们做一个二分类任务print("embedding输入文本是:",text)print("embedding输入文本shape:",text.shape)embedding_mean = embedding.mean(dim=1) # 对每个样本的嵌入向量进行平均print("embedding输出文本shape:",embedding_mean.shape)
2024-10-17 17:17:28
2151
原创 深度学习Day-34:ACGAN任务
条件生成对抗网络”(Conditional Generative Adversarial Nets)ACGAN最直观的功能便是既可以生成图像又可以进行分类。它是一种深度学习模型,由Ian Goodfellow等人在2014年提出生成对抗网络(GAN)的基础上进一步发展而来。ACGAN在原始GAN的基础上加入了条件控制,使得生成过程可以受到额外信息的指导,从而能够生成具有特定属性或者风格的数据。
2024-09-24 08:30:00
1521
原创 深度学习Day-33:Semi-Supervised GAN理论与实战
SGAN(Spectral Generative Adversarial Networks)是一种生成对抗网络(GAN)的变体,它在训练过程中引入了谱正则化(spectral normalization)技术。GAN是一种深度学习模型,由生成器(Generator)和判别器(Discriminator)组成,它们通过相互对抗的方式训练,生成器试图生成逼真的样本,而判别器试图区分真实样本和生成样本。在传统的GAN中,生成器和判别器的训练过程可能会遇到梯度消失或梯度爆炸的问题,导致训练不稳定。
2024-09-17 16:41:02
1134
原创 深度学习Day-32:CycleGAN实战
CycleGAN的一个重要应用领域是Domain Adaptation,可以把一张普通的风景照变化成梵高化作,CycleGAN 由左右两个 GAN 网络组成 G(AB) 负责把 A 类物体 (斑马) 转换成 B 类物体 (正常的马). G(BA) 负责把 B 类物体 (正常的马) 还原成 A 类物体 (斑马),如下图所示。三、理论基础。
2024-09-11 20:41:43
1121
原创 深度学习Day-31:Pix2Pix理论与实战
Pix2Pix是图像翻译必读的文章之一,它的核心技术有三点:基于CGAN的损失函数,基于U-Net的生成器和基于PatchGAN的判别器。Pix2Pix 能够在诸多图像翻译任务上取得令人惊艳的效果,但因为它的输入是图像对,因此它得到的模型还是有偏的。这里的有偏指的是模型能够在与数据集近似的 x 的情况下得到令人满意的生成内容,但是如果输入 x 与训练集的偏差过大,Pix2Pix 得到的结果便不那么理想了。三、理论基础。
2024-08-27 00:37:23
1408
原创 深度学习Day-30:CGAN入门丨生成手势图像丨可控制生成
要求:得到如下输出: 2. 导入数据3. 数据可视化运行下述代码:输出图像为:运行下述代码:5. 构建模型5.1.初始化权重5.2.定义生成器输出为: 5.3.定义鉴别器输出为:三、 训练模型 1. 定义训练参数2. 定义优化器3. 训练模型输出为:4. 可视化4.1.LOSS图输出图像为: 输出图像为: CGAN(条件生成对抗网络)的原理是在原始G
2024-08-20 20:30:33
886
原创 深度学习Day-29:CGAN入门丨生成手势图像
要求: 2. 设置随机种子运行下述代码:3. 导入数据4. 数据可视化运行下述代码:输出图像为: 运行下述代码:6. 构建模型6.1.初始化权重6.2.定义生成器输出为:以及: 4.3.定义鉴别器输出为:以及: 三、 训练模型 1. 定义训练参数2. 定义优化器得到如下输出:3. 训练模型输出为:4. 模型分析4.1.加载模型4.2.分析模型
2024-08-12 22:53:14
1125
2
原创 深度学习Day-28:生成对抗网络(GAN)入门
自定义权重初始化函数,作用于netG和netD# 获取当前层的类名# 如果类名中包含'Conv',即当前层是卷积层= -1:# 使用正态分布初始化权重数据,均值为0,标准差为0.02# 如果类名中包含'BatchNorm',即当前层是批归一化层= -1:# 使用正态分布初始化权重数据,均值为1,标准差为0.02# 使用常数初始化偏置项数据,值为0# 输入为Z,经过一个转置卷积层nn.BatchNorm2d(ngf * 8), # 批归一化层,用于加速收敛和稳定训练过程。
2024-08-07 22:42:53
716
原创 深度学习Day-27:生成对抗网络(GAN)入门
import os## 创建文件夹os.makedirs("./images/", exist_ok=True) ## 记录训练过程的图片效果os.makedirs("./save/", exist_ok=True) ## 训练完成时模型保存的位置os.makedirs("./datasets/mnist", exist_ok=True) ## 下载数据集存放的位置## 超参数配置b1 = 0.5b2 = 0.999n_cpu = 2。
2024-07-30 19:57:24
1208
原创 深度学习Day-26:Inception-V3算法实战与解析
Inception v3的主要特点如下:1.更深的网络结构:Inception v3比之前的Inception网络结构更深,包含了48层卷积层。这使得网络可以提取更多层次的特征,从而在图像识别任务上取得更好的效果。2.使用Factorized Convolutions:Inception v3采用了Factorized Convolutions(分解卷积),将较大的卷积核分解为多个较小的卷积核。这种方法可以降低网络的参数数量,减少计算复杂度,同时保持良好的性能。
2024-07-23 00:54:45
900
原创 深度学习Day-25:Inception-V1算法实战与解析
Inception v1是一种深度卷积神经网络,该网络的最大特点是使用了Inception模块,该模块通过多种不同的卷积核来提取不同大小的特征图,并将这些特征图拼接在一起,从而同时考虑了不同尺度下的特征信息,提高了网络的准确性和泛化能力。在Inception v1中,Inception模块一般由1x1、3x3和5x5的卷积层以及一个最大池化层组成,同时还会在最后加上一个1x1的卷积层来减少通道数,从而避免参数过多的问题。
2024-07-16 17:05:59
1115
原创 深度学习Day-24:ResNeXt-50算法思考
中的学习记录博客问题:如果conv_shortcut=False,那么执行“x=Add()…”语句时,通道数不一致的,为什么不会报错?
2024-07-09 10:57:56
585
1
原创 深度学习Day-23:ResNeXt-50实战解析
ResNeXt是ResNet的升级版,在ResNet的基础上,引入了cardinality的概念,类似于ResNet,ResNeXt也有ResNeXt-50,ResNeXt-101的版本。这篇文章介绍了一种用于图像分类的简单而有效的网络架构,称为Aggregated Residual Transformations for Deep Neural Networks。该网络采用了VGG/ResNets的策略,通过重复层来增加深度和宽度,并利用分裂-变换-合并策略以易于扩展的方式进行转换。
2024-07-01 22:44:16
1192
原创 深度学习Day-22:DenseNet + SE-Net实战
SE-Net 是 ImageNet 2017(ImageNet 收官赛)的冠军模型,是由WMW团队发布。具有复杂度低,参数少和计算量小的优点。且SENet 思路很简单,很容易扩展到已有网络结构如 Inception 和 ResNet 中。已经有很多工作在空间维度上来提升网络的性能,如 Inception 等,而 SENet 将关注点放在了特征通道之间的关系上。
2024-06-26 20:09:08
775
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人