nuScenes数据集详细解析

本文深入解析nuScenes数据集,涵盖场景、采样、车辆信息、标注和分类等内容。通过示例展示如何提取和可视化数据,为自动驾驶领域的深度学习研究提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nuScenes数据集

from nuscenes.nuscenes import NuScenes

nusc = NuScenes(version='v1.0-mini', dataroot='./data/nuscene/', verbose=True)

提取

1. 场景scene

20秒长的连续帧序列

# 查看所有场景
nusc.scene

nusc.list_scenes()
scene {
   
   "token":                   <str> -- 唯一的标识符.
   "name":                    <str> -- 短字符串标识符。
   "description":             <str> -- 更长的场景描述。
   "log_token":               <str> -- 外键。提取数据的位置记录日志的点。
   "nbr_samples":             <int> -- 这个场景中的样本数量
   "first_sample_token":      <str> -- 外键。指向场景中的第一个样本。
   "last_sample_token":       <str> -- 外键。指向场景中的最后一个样本。
}
# 获取第1个场景scene
myscene = nusc.scene[0]

# 获取某个场景的第1次sample的信息
mysample = nusc.get('sample', myscene['first_sample_token'])

获取样本数据sample_data,并可视化

  • radar_front_data = nusc.get(‘sample_data’, mysample[‘data’][‘RADAR_FRONT’])
  • nusc.render_sample_data(radar_front_data[‘token’])

获取样本标注sample_annotation,并可视化

  • my_annotation_metadata = nusc.get(‘sample_annotation’,my_sample[‘anns’][18])
  • nusc.render_annotation(my_annotation_metadata[‘token’])

2. 采样sample

带标注的关键帧

nusc.sample
sample {
   
   "token":                   <str> -- 唯一的标识符.
   "timestamp":               <int> -- Unix时间戳
   "scene_token":             <str> 
### Nuscenes 数据集概述 Nuscenes 数据集是一个专为自动驾驶研究设计的大规模多模态数据集[^3]。此数据集不仅提供了丰富的传感器数据,还包含了详细的场景描述和对象标注信息。 #### 数据集特点 - **多传感器融合**:Nuscenes 收录了来自多个不同类型的传感器的数据,包括摄像头、激光雷达 (LiDAR)、毫米波雷达 (Radar),以及 GPS/IMU 组合定位系统。这种配置能够捕捉到更加全面的道路环境信息。 - **高质量标注**:除了常规的目标检测标签外,Nuscenes 还特别强调了对动态物体轨迹预测的支持,通过提供高精度的 3D 边界框标注来实现这一点[^4]。 #### 获取与安装 对于希望利用 Nuscenes 开展科研工作的研究人员来说,可以从官方网站获取最新版本的数据集并按照给定指南完成本地部署: 1. 访问[Nuscenes 官方网站](https://www.nuscenes.org/)注册账号; 2. 登陆后进入下载页面选择所需资源包进行下载; ```bash cd ~ git clone https://github.com/nutonomy/nuscenes-devkit.git ``` 上述命令用于克隆 nuscenes-devkit 工具库至个人计算机上以便后续处理操作。 #### 使用说明文档 官方提供的开发者工具包内含详尽的帮助手册和技术支持材料,帮助用户快速理解如何解析各类文件结构及应用接口函数。特别是针对想要转换成 COCO 格式的使用者而言,可以通过阅读相关章节找到具体方法步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值