python大数据与数理统计——假设检验二

博客探讨了假设检验在统计学中的应用,解释了如何通过比较样本均值与总体均值的差异来确定该差异是否具有统计学意义。显著性水平α(通常为0.05)用来决定是否拒绝原假设H0。当P值小于等于α时,表明观察到的差异是小概率事件,从而拒绝H0,认定差异具有统计学意义。文章还提到了SPSS软件在假设检验中的使用,并指出抽样误差可能导致的无统计学意义的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
假设检验也就是说你根据所收集到的数据统计得到的结果,这个结果可能与黄金标准有差异,你想验证这个差异是否具有统计学意义(也就是应当拒绝或不拒绝)。
在这里插入图片描述
案例分析的这两种可能性的表述的理解非常重要。72次/分钟与74.2次/分钟之间的差异到底是什么原因引起的呢?
第一种就是由于抽样的误差导致的——被试人自身的身体差异,这个影响并不是山区所有被试人都具有的特性,只有某些人具有。恰巧把他抽出来了。这样算出来的均数虽然跟总均数有出入但是是相同的。那么就称为差异无统计学意义。
第二种就是山区所有的被试者都是由于某种因素导致均数与总均数有出入,那么就称为差异有统计学意义。
(这里可以说是具有显著性差异吗?希望有人可以解答)
验证这种差异到底拒绝哪种需要进行假设检验。
在这里插入图片描述
这里明白μ与μ0的关系即可。按照假设H0为正确的假设为前提计算P值,以推断H0是否成立。(类似于数学上的反证法)
在这里插入图片描述
显著性水准α,听起来很复杂,之前说过的可信区间跟这个是一样的。可信区间1-α=0.95(95%)即95%的可信度。如果P<=α,那么也就是说你随机抽样所统计的数据在所在95%的区间的范围外发生了。也就是说5%的小概率事件发生了。那也就是说明这个差异具有统计学意义。拒绝H0
在这里插入图片描述
SPSS统计学软件。不知道会不会教哦。但是搞笑的是我的双学位心理学会学心理统计与SPSS应用😅阴差阳错的学习了…
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值