K-hidden(c++实现)

本文介绍了信息负表示的概念,包括负调查和负数据库,并详细讲解了K-hidden算法,特别是其与q-hidden算法的关系。K-hidden算法生成的负数据库对于局部搜索策略具有难以逆转的特性,当K>3时,负数据库的解难度和可控性增强。最后,提供了C++实现K-hidden算法的代码,鼓励读者自我优化和改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-hidden算法
1、信息负表示

  • 负表示的概念由Esponda等人于2004年首次提出。
  • 信息负表示是由生物免疫系统中的负选择机制启发得到。
  • 负调查、负数据库是信息负表示的主要模型之一。

2、负调查

 

1adc7fc3821d4bf2ab7773f0aeed5f4e.png

  • 负调查(Negative surveys)是一种隐私保护技术,可以在不获取用户的真实问卷调查的情况下来分析调查数据。
  • 目前有两大类负调查方式,主要分为均匀负调查(UNSs)和高斯负调查(GNSs)。
  • 1f7ddb32906944c591f374718d3d1ae2.png

 

3.负数据库

  • 负数据库是信息负表示的一个重要模型。
  • 正数据库(Positive database ,DB) :传统的数据库
    • 负数据库(Negative database ,NDB ):由Esponda等人于2004年提出DB的补集的压缩表示全集U = {0, 1}

                        58fb4f2f8f7b431a86abe1c0251b6226.png

 

负数据库(NDB):

  • 通配符‘*’可任意表示‘0’、‘1’
  • 确定位0、1;不确定位*
  • 使用‘*’压缩补集U-DB
  • NDB的大小可压缩到合理的范围,如O(DB)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值