简介:
1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!
2.本篇文章对Pointnet++特征提取模块进行改进,加入
RepHMS,提升性能。
3.专栏持续更新,紧随最新的研究内容。
目录
1.理论介绍
由于路径聚合特征金字塔网络(PAFPN)具有有效的多尺度特征融合能力,它已成为基于YOLO的检测器中广泛采用的组件。然而,PAFPN难以将高级语义线索与低级空间细节相结合,这限制了其在实际应用中的性能,尤其是在存在显著尺度变化的情况下。在本文中,我们提出了MHAF-YOLO,这是一种新型检测框架,其特色在于一种名为多分支辅助特征金字塔网络(MAFPN)的通用颈部设计,该设计包含两个关键模块:浅层辅助融合(SAF)和高级辅助融合(AAF)。SAF通过融合浅层特征来连接骨干网络和颈部,有效地以高保真度传递关键的低级空间信息。同时,AAF在颈部的更深层整合多尺度特征信息,为输出层提供更丰富的梯度信息,并进一步增强模型的学习能力。为了补充MAFPN,我们引入了全局异构灵活核选择(GHF