DeepLabv3+改进37:在主干网络中添加SCSA|新颖的空间和通道协同注意力模块

🔥【DeepLabv3+改进专栏!探索语义分割新高度】
🌟 你是否在为图像分割的精度与效率发愁?
📢 本专栏重磅推出:
✅ 独家改进策略:融合注意力机制、轻量化设计与多尺度优化
✅ 即插即用模块:ASPP+升级、解码器

PS:订阅专栏提供完整代码

论文简介

摘要 - 通道注意力和空间注意力分别在提取特征依赖性和空间结构关系方面为各种下游视觉任务带来了显著的改进。尽管它们的结合更有助于发挥各自的优势,但通道注意力和空间注意力之间的协同作用尚未得到充分探索,未能充分利用多语义信息的协同潜力来指导特征并缓解语义差异。我们的研究试图揭示空间注意力和通道注意力在多个语义层面上的协同关系,提出了一种新颖的空间和通道协同注意力模块(SCSA)。我们的 SCSA 由两部分组成:可共享的多语义空间注意力(SMSA)和渐进式通道自注意力(PCSA)。SMSA 集成了多语义信息,并采用渐进式压缩策略将判别性空间先验注入到 PCSA 的通道自注意力中,有效地引导通道重新校准。此外,基于自注意力机制的稳健特征交互在PCSA 进一步缓解了 SMSA 中不同子特征之间多语义信息的差异。我们在七个基准数据集上进行了大量实验,包括 ImageNet-1K 上的分类、MSCOCO 2017 上的目标检测、ADE20K 上的分割以及另外四个复杂场景检测数据集。我们的结果表明

### DeepLabV3Plus 模型改进方法研究 #### 使用更高效的主干网络 为了提升模型性能,可以考虑替换现有的ResNet为主干网络。例如,采用EfficientNet或ConvNeXt作为新的骨干网能够显著减少参数量并提高计算效率[^1]。 #### 增强空间金字塔池化层(ASPP) 增强的空间金字塔池化(Spatial Pyramid Pooling, SPP)机制是DeepLab系列的重要组成部分之一。可以在原有基础上进一步优化ASPP模块的设计,比如引入更多的尺度分支或者调整各分支的感受野大小;也可以探索其他形式的多尺度上下文聚合方案来替代传统的SPP/ASPP结构[^2]。 #### 引入注意力机制 近年来,各种类型的自注意(Self-Attention)卷积神经元(CNN)-RNN混合架构被广泛应用于视觉任务中取得了良好效果。对于语义分割而言,在编码器部分加入局部区域内的像素级交互关系建模有助于捕捉更加精细的目标边界信息;而在解码阶段则可以通过全局范围内的特征加权融合实现更好的背景抑制能力。 ```python import torch.nn as nn class AttentionModule(nn.Module): def __init__(self, in_channels): super().__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1, kernel_size=1) def forward(self, x): attention_map = self.conv(x).sigmoid() return x * attention_map # 将此模块嵌入到现有框架中的适当位置即可应用注意力机制 ``` #### 调整跳跃连接策略 除了经典的低分辨率深层特征与高分辨率浅层特征相加的方式外,还可以尝试不同组合方式下的跨层次特征传递路径设计,如concatenate操作代替addition运算符构建更为复杂的残差学习单元;另外,针对特定应用场景定制化的选择哪些层级间建立联系也值得深入探讨。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值