🔥【DeepLabv3+改进专栏!探索语义分割新高度】
🌟 你是否在为图像分割的精度与效率发愁?
📢 本专栏重磅推出:
✅ 独家改进策略:融合注意力机制、轻量化设计与多尺度优化
✅ 即插即用模块:ASPP+升级、解码器
PS:订阅专栏提供完整代码
论文简介
摘要 - 通道注意力和空间注意力分别在提取特征依赖性和空间结构关系方面为各种下游视觉任务带来了显著的改进。尽管它们的结合更有助于发挥各自的优势,但通道注意力和空间注意力之间的协同作用尚未得到充分探索,未能充分利用多语义信息的协同潜力来指导特征并缓解语义差异。我们的研究试图揭示空间注意力和通道注意力在多个语义层面上的协同关系,提出了一种新颖的空间和通道协同注意力模块(SCSA)。我们的 SCSA 由两部分组成:可共享的多语义空间注意力(SMSA)和渐进式通道自注意力(PCSA)。SMSA 集成了多语义信息,并采用渐进式压缩策略将判别性空间先验注入到 PCSA 的通道自注意力中,有效地引导通道重新校准。此外,基于自注意力机制的稳健特征交互在PCSA 进一步缓解了 SMSA 中不同子特征之间多语义信息的差异。我们在七个基准数据集上进行了大量实验,包括 ImageNet-1K 上的分类、MSCOCO 2017 上的目标检测、ADE20K 上的分割以及另外四个复杂场景检测数据集。我们的结果表明