目录
改进方式介绍:
**多维尺度变换(Multidimensional Scaling, MDS)** 是一种通过保持样本间距离关系实现降维的技术,其核心目标是将高维空间中的样本映射到低维(如 2D/3D)空间,同时最小化原始距离与降维后距离的差异。
##### 1. 经典 MDS(Classical MDS, CMDS)原理

* **输入**:高维样本的距离矩阵 $D \in \mathbb{R}^{n \times n}$,其中 $D_{ij}$ 表示样本 $i$ 与 $j$ 的距离;
* **目标**:求解低维坐标矩阵 $Y \in \mathbb{R}^{n \times d}$($d \ll$ 原始维度),使得降维后的距离 $\|Y_i - Y_j\|_2$ 尽可能接近 $D_{ij}$;
* **数学推导**:通过特征分解协方差矩阵实现,核心公式为:
$$
B = -\frac{1}{2} J D^2 J, \quad Y = U \Lambda^{1/2}
$$
<