全网首发--Unet3+改进14:在不同位置添加DoubleAttention

本文内容:在不同位置添加DoubleAttention 注意力机制

目录

论文简介

1.步骤一

2.步骤二

3.步骤三

4.步骤四


论文简介

 

 

学习捕捉远程关系是图像/视频识别的基础。

现有的CNN模型通常依赖于增加深度来建模这种关系,这是非常低效的。在这项工作中,我们提出了“双注意块”,这是一种新的组件,它从输入图像/视频的整个时空空间中聚集和传播信息全局特征,使后续卷积层能够有效地从整个空间中访问特征。该组件采用双注意机制,分两步进行设计,第一步通过二阶注意池将整个空间的特征聚集成一个紧凑的集合,第二步通过另一个注意自适应地选择特征并将其分配到每个位置。所提出的双注意块易于采用,并且可以方便地插入现有的深度神经网络中。

我们对图像和视频识别任务进行了广泛的消融研究和实验,以评估其性能。在图像识别任务上,配备我们的双注意力块的ResNet-50在ImageNet-1k数据集上的性能优于更大的ResNet-152架构,参数数量减少了40%以上,FLOPs也减少了。在动作识别任务上,我们提出的模型在Kinetics和UCF-101数据集上取得了最先进的结果,效率显著高于最近的工作。

### U-Net、UNet++ 和 U2Net 的特点对比 #### U-Net 特点 U-Net 是一种经典的卷积神经网络架构,专为生物医学图像分割而设计。该模型采用了编码器-解码器结构,在跳过连接的帮助下能够有效地捕捉空间信息并恢复高分辨率特征图[^1]。 ```python class UNet(nn.Module): def __init__(self, n_channels, n_classes): super(UNet, self).__init__() # 定义编码器部分 ... # 定义解码器部分以及跳跃连接 ... def forward(self, x): # 前向传播过程 return x ``` #### UNet++ 特点 相比于原始版本,UNet++引入了更复杂的嵌套密集跳跃路径(nested dense skip connections),这使得不同层次之间的信息交流更加充分。通过这种方式增强了特征重用机制,并允许在网络的不同尺度上更好地融合上下文信息[^2]。 ```python class UNetPlusPlus(nn.Module): def __init__(self, num_classes=1, input_channels=3, deep_supervision=False, **kwargs): super().__init__() nb_filter = [32, 64, 128, 256, 512] self.deep_supervision = deep_supervision # 构建更多样化的跳跃连接模式 ... def forward(self, inputs): # 复杂的前向计算逻辑 return outputs ``` #### U2Net 特点 U2Net 则进一步发展出了堆叠拼接(stack-and-stitch)与网络嵌套(network-in-network)的设计理念。这种独特的组合不仅保留了传统U形结构的优点,还增加了额外的学习能力来处理更为复杂的数据分布情况。此外,U2Net 还特别适用于资源受限环境下的高效推理任务。 ```python class U2NET(nn.Module): def __init__(self,in_ch=3,out_ch=1): super(U2NET,self).__init__() self.stage1 = RSU7(in_ch,32,64) self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True) # 更多阶段定义... def forward(self,x): # 各级RSUs的操作... return F.sigmoid(d1) ``` ### 实现方式总结 对于上述三种变体而言,虽然都继承自最初的U-Net框架,但在具体实现细节方面存在显著差异: - **U-Net**: 主要依赖于简单的编码器-解码器加跳跃链接; - **UNet++**: 加入了更多的内部连通性和跨层交互特性; - **U2Net**: 结合stack-and-stitch策略和network-in-network技术构建了一个更具表现力且高效的体系结构。 这些改进共同推动着语义分割领域向着更高精度的方向迈进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值