AICurator
https://mbd.pub/o/author-aWaWmHBoZA==/work
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
CEEMDAN
CEEMDAN(完全集合经验模态分解与自适应噪声)是针对非线性非平稳信号的改进分解方法。它通过自适应噪声和完全集合平均技术,解决了传统EMD模态混叠和EEMD噪声残留问题。核心思想是在分解过程中加入与信号特征匹配的自适应噪声,通过迭代分解残余分量和集合平均处理,最终得到无噪声残留的IMF分量和残余项。相较于前代方法,CEEMDAN具有无噪声残留、抑制模态混叠和计算高效等优势,广泛应用于故障诊断、金融预测等领域,为机器学习模型提供更有效的信号特征表达。原创 2025-07-17 16:52:26 · 262 阅读 · 0 评论 -
EEMD集合经验模态分解
摘要:集合经验模态分解(EEMD)是针对传统EMD模态混叠问题提出的改进方法,通过添加白噪声并多次分解后取平均,抑制噪声影响,提高分解准确性。其关键参数包括噪声标准差(通常为信号标准差的0.1-0.4倍)和集合次数(50-100次)。EEMD在机械故障诊断、金融预测等场景中应用广泛,能有效提升模型性能(如XGBoost故障识别准确率从88%提升至95%)。相比EMD,EEMD显著降低模态混叠,但计算复杂度更高。改进方法如CEEMD和自适应集合次数算法可优化其不足。EEMD与机器学习结合,为信号处理提供了重要原创 2025-07-16 22:42:17 · 23 阅读 · 0 评论 -
EMD经验模态分解
EMD(经验模态分解)是一种自适应的非线性信号处理方法,由Huang于1998年提出。它通过筛选算法将复杂信号分解为多个固有模态函数(IMF)和一个趋势项,无需预设基函数,特别适合处理非平稳信号。EMD在机器学习中广泛应用于特征提取、噪声抑制和多尺度分析,但也存在模态混叠、端点效应和计算复杂度高等问题。改进方法包括EEMD、CEEMD和端点延拓技术。与傅里叶变换、小波变换相比,EMD具有更好的自适应性,但计算成本较高。该方法在故障诊断、生物信号分析等领域具有重要应用价值。原创 2025-07-16 22:40:47 · 118 阅读 · 0 评论 -
变分模态分解
变分模态分解(VMD)是一种基于变分理论的自适应信号处理方法,通过构建和求解变分模型将原始信号分解为多个本征模态函数(IMF)。VMD克服了传统分解方法的局限性,在机械故障诊断、生物医学信号处理和能源数据分析等领域展现出优势。其核心流程包括参数初始化、迭代更新和停止条件判断。VMD具有抗噪能力强、自适应分解等优点,但也存在参数依赖性强、计算复杂度高等局限性。该技术为处理非线性、非平稳序列数据提供了有效手段。原创 2025-07-14 23:19:50 · 221 阅读 · 0 评论 -
Autoencoder特征选择
Autoencoder(自编码器)是一种通过编码-解码结构实现数据降维的无监督神经网络模型。其核心原理是通过低维瓶颈层压缩输入数据,迫使模型学习关键特征。相比PCA等传统方法,Autoencoder能捕捉非线性关系,具有更高灵活性。主要类型包括稀疏Autoencoder、变分Autoencoder和深度Autoencoder。实践步骤包括设计网络结构、训练模型和提取低维编码,需注意瓶颈层维度、激活函数选择和正则化等参数调优。Autoencoder在图像处理、特征选择等领域具有广泛应用优势,但计算复杂度较高。原创 2025-07-14 23:09:58 · 347 阅读 · 0 评论 -
SPE 特征选择器
SPE特征选择器是一种基于随机邻近嵌入的无监督特征选择方法。其核心原理是通过将高维数据映射到低维空间,保持原始数据的邻近关系,从而计算各特征对维持数据结构的重要性得分。该方法能够考虑数据全局结构,适用于高维数据分析,且不依赖标签信息。但存在计算复杂度高、解释性较弱以及对数据分布敏感等局限性,可能影响特征选择的效果和效率。原创 2025-07-13 17:38:49 · 28 阅读 · 0 评论 -
MDS特征选择:从距离保持到空间映射
摘要: 多维尺度变换(MDS)是一种通过保持样本间距离关系实现降维的技术,核心目标是将高维数据映射到低维空间。经典MDS通过特征分解协方差矩阵实现,而非度量MDS则保留距离的排序关系。MDS可与特征选择结合,如基于特征加权的距离矩阵优化或评估特征对距离的贡献度。其优点包括符合可视化需求和处理非线性关系,但计算复杂度较高。与其他方法(如PCA、LASSO)相比,MDS在保留样本距离关系的场景中具有独特优势,适用于需几何解释性的任务。实际应用中建议结合领域知识优化结果。原创 2025-07-13 17:37:59 · 301 阅读 · 0 评论 -
PCA特征选择
摘要:本文介绍了基于PCA的特征选择方法。PCA作为无监督降维技术,通过正交变换提取主成分。与传统特征选择不同,PCA生成新特征而非选择原始特征,但可通过分析载荷矩阵间接筛选重要特征。具体步骤包括数据标准化、PCA计算、载荷矩阵分析和特征筛选。该方法能有效处理特征相关性,但存在线性局限性和解释性不足等缺点,适用于高维数据预处理、特征去噪等场景。(149字)原创 2025-07-13 17:32:17 · 39 阅读 · 0 评论 -
灰色关联分析特征选择:原理、方法与应用
灰色关联分析(GRA)是一种适用于小样本、信息不完全数据的多因素统计方法,通过计算序列间关联度衡量因素相关性。其核心步骤包括数据无量纲化、计算绝对差序列、确定极值、求取关联系数和关联度。GRA无需数据分布假设,可处理非线性关系,计算复杂度低,但依赖序列形状、需手动设定分辨系数。典型应用包括医学诊断、工程监测和农业科学等。相比Pearson、MIC等方法,GRA更适用于小样本场景,但对高维数据需降维处理。优化建议包括合理选择无量纲化方法和调整分辨系数。原创 2025-07-13 17:30:49 · 58 阅读 · 0 评论 -
LSTM改进20:使用CEEMD模态分解,提高训练效果(完整pytorch源码和教程)
本文介绍了基于CEEMDAN的信号分解方法及其实现步骤:1) 通过waveform_decomposition.py实现互补集合经验模态分解,生成IMF分量和残差信号;2) 在train.py中构建完整数据处理流程,包含缺失值处理、多种特征选择方法(L1/L2正则化、树模型、RFE等)以及VMD波形分解可视化;3) 最终运行train.py完成数据处理与分析。方法支持3D可视化展示分解结果,并提供多种特征工程选项。原创 2025-07-11 20:45:16 · 107 阅读 · 0 评论 -
机器学习专栏介绍
本专栏介绍了一个基于深度学习的多变量时间序列预测框架,提供高度模块化的解决方案。系统支持多元/单元预测模式,集成十余种基础模型(如LSTM、GRU、XGBoost等)及其改进变体,包含特征选择(12种方法)、信号分解(10种算法)和参数优化(9种智能算法)三大核心模块。所有功能通过参数配置即可灵活组合,支持数百种实验方案,特别适合科研与工业场景。专栏提供完整代码、使用手册和答疑服务,早鸟价69.9元。原创 2025-07-06 16:52:58 · 27 阅读 · 0 评论 -
LSTM改进19:使用EEMD模态分解,提高训练效果(完整pytorch源码和教程)
文章摘要: EEMD(集合经验模态分解)通过添加白噪声和集合平均机制有效解决了EMD的模态混叠问题。其核心原理是利用白噪声的频域均匀分布特性,将不同尺度的信号成分分离到对应IMF中。实现流程包括:添加随机白噪声、执行EMD分解、重复迭代M次并取IMF平均值。关键参数为噪声标准差(0.1-0.4倍信号标准差)和集合次数(50-100次)。EEMD在机械故障诊断、金融预测等领域有显著优势,但计算成本较高,可通过CEEMD或自适应迭代优化。代码实现包含数据预处理、特征选择和VMD分解可视化模块。原创 2025-06-29 20:27:33 · 54 阅读 · 0 评论 -
LSTM改进18:使用经验模态分解(EMD),提高训练效果(提供完整pytorch源码和教程)
摘要:本文介绍了经验模态分解(EMD)的基本概念、原理及其在机器学习中的应用。EMD是一种自适应信号处理方法,可将非平稳信号分解为多个固有模态函数(IMF)和趋势项。文章详细阐述了EMD的分解步骤,包括极值点确定、包络线构造、筛选迭代等过程。在机器学习应用中,EMD可用于特征提取、噪声抑制和多尺度分析。同时指出了EMD存在的模态混叠、端点效应等缺点。最后提供了EMD实现的具体代码步骤,包括数据预处理、特征选择和波形分解等模块,并展示了三维可视化方法。通过该框架,用户可方便地将EMD应用于各类时序数据分析任务原创 2025-06-29 20:13:43 · 39 阅读 · 0 评论 -
LSTM改进17:使用变分模态分解(VMD),提高训练效果(完整pytorch源码和教程)
本文介绍了变分模态分解(VMD)的基本原理及其在时间序列分析中的应用实现。VMD是一种自适应信号分解方法,通过构建变分模型将信号分解为多个本征模态函数(IMF),克服了传统方法的局限性。文章详细阐述了VMD算法的三个关键步骤:参数初始化、迭代更新和停止条件判断,并分析了其在机械故障诊断、生物医学信号处理和能源数据分析等领域的应用场景。同时指出了VMD方法的优势(抗噪能力强、自适应分解)和局限性(参数依赖性强、计算复杂度高)。最后,通过Python代码示例展示了如何将VMD集成到数据处理流程中,包括信号分解、原创 2025-06-15 22:49:38 · 291 阅读 · 0 评论 -
LSTM改进17:使用Autoencoder特征选择器,提高训练效果
摘要:本文介绍了基于Autoencoder(自编码器)的无监督特征选择方法。首先阐述了Autoencoder的基本概念,包括编码器和解码器结构及其降维原理;然后详细说明了Autoencoder与传统降维方法(如PCA)的对比优势;接着介绍了稀疏Autoencoder、变分Autoencoder和深度Autoencoder等典型变体;最后给出了Autoencoder特征选择的具体实现步骤,包括数据预处理、模型构建、训练过程和特征重要性计算。代码实现部分展示了如何通过PyTorch构建Autoencoder模型原创 2025-06-15 22:34:09 · 443 阅读 · 0 评论 -
LSTM改进16:使用SPE特征选择器,提高训练效果
其基本思路是为高维特征空间在低维空间(如二维平面或三维超平面,通常用二维空间)上寻找一个投影。在这个投影过程中,尽量保持原始高维空间中数据点之间的邻近关系,即原本在高维空间中相距很远的数据点,在低维投影空间中也相距较远,而原本相近的点在低维空间中仍然相近。通过这种方式,将高维数据的结构和关系以一种可理解的方式在低维空间中呈现出来,以便进行后续的分析和处理。原创 2025-06-11 23:00:14 · 52 阅读 · 0 评论 -
LSTM改进15:使用MDS特征选择器,提高训练效果
摘要: 本文介绍了基于多维尺度变换(MDS)的特征选择方法实现流程。首先详细说明了MDS的原理,包括经典MDS(保持样本距离数值)和非度量MDS(保持距离排序关系)。然后重点描述了MDS_FeatureSelector类的实现,该工具通过分析特征扰动对距离矩阵的影响来评估特征重要性,支持缺失值处理、自动特征筛选等功能。最后展示了如何在训练流程中集成该选择器,包括数据处理、特征选择及结果可视化等环节。该方法为高维数据特征选择提供了新的解决方案,保持原始数据结构的同时实现降维。原创 2025-06-11 22:33:47 · 51 阅读 · 0 评论 -
LSTM改进15:使用PCA关联特征选择器,提高训练效果
本文介绍了基于主成分分析(PCA)的特征选择方法。PCA是一种无监督降维技术,通过线性变换将高维特征转换为正交的主成分。基于PCA的特征选择通过分析原始特征在主成分上的载荷(Loadings),筛选对高方差主成分贡献大的特征。具体步骤包括:数据标准化、执行PCA获取载荷矩阵、计算特征重要性分数并筛选Top-K特征。该方法适用于高维数据预处理、特征去噪等场景,但依赖线性变换且会丢失原始特征解释性。文中还提供了PCA特征选择器的Python实现代码,包含缺失值处理、数据标准化和特征重要性计算等功能。原创 2025-06-11 22:09:29 · 63 阅读 · 0 评论 -
LSTM改进14:使用灰色关联特征选择器,提高训练效果
目录改进方式介绍:步骤一步骤二步骤三添加data_decomposition.py,加入如下代码:步骤二在train.py中添加如下代码:步骤三右键运行train.py即可订阅专栏后私聊我领取代码原创 2025-06-10 22:50:14 · 161 阅读 · 0 评论 -
LSTM改进13:使用MIC特征选择优化,提高训练效果
MIC 的核心定义与原理最大信息系数(Maximal Information Coefficient, MIC) 是一种用于度量变量间非线性相关性的统计指标,由 Reshef 等人于 2011 年提出。其核心优势在于:捕捉任意依赖关系:不仅适用于线性关系,还能检测非线性、周期性、分段函数等复杂关联(如二次函数、正弦曲线)。归一化度量:取值范围为 [0, 1],1 表示完全相关,0 表示无关,结果更直观。数据适应性:不依赖数据分布假设(如正态性),适用于连续 / 离散变量(需离散化处理)。原理公式与原创 2025-06-10 22:09:40 · 68 阅读 · 0 评论 -
LSTM改进12:使用Pearson 特征选择优化,提高训练效果
Pearson 特征选择是过滤法中最经典的线性相关性分析工具,适合快速筛选与目标变量线性相关的特征,尤其在可解释性要求高的场景(如金融、医疗)中广泛应用。实际使用时需结合数据分布、业务逻辑及非线性方法(如树模型),形成组合策略,避免单一方法的局限性。原创 2025-06-10 21:57:49 · 143 阅读 · 0 评论 -
LSTM改进11:使用ReliefF 范数特征选择优化,提高训练效果
ReliefF 特征选择算法是一种经典的过滤式(Filter)特征选择方法,用于评估特征的重要性并筛选出对模型最有用的特征。它是 Relief 算法的扩展版本,主要解决了原始 Relief 算法只能处理二分类问题的局限性,能够有效应对多分类问题和不平衡数据集,同时对噪声具有一定鲁棒性。原创 2025-06-09 22:43:02 · 35 阅读 · 0 评论 -
LSTM改进10:使用RFE特征选择优化,提高训练效果
RFE(递归特征消除)是一种包裹式特征选择方法,核心思想是通过递归地剔除对模型贡献最小的特征,逐步筛选出最优特征子集。具体步骤为:初始训练:用全特征集训练基模型(如逻辑回归、SVM),计算各特征的重要性(如权重系数绝对值、特征重要性得分);排序与剔除:按重要性排序,删除权重最低的特征,形成新的特征子集;迭代优化:用新子集重复训练模型,直到剩余特征数达到预设阈值或满足停止条件。该方法通过模型性能间接评估特征重要性,能捕捉特征间复杂关系,但计算成本较高(需多次训练模型)。原创 2025-06-08 23:05:43 · 170 阅读 · 0 评论 -
LSTM改进9:使用树模型特征选择优化,提高训练效果
树模型特征选择器的核心原理是:在构建决策树的过程中,通过评估不同特征对样本 “纯度”(或不确定性)的改善程度来决定节点分裂的特征。具体而言,利用基尼指数(CART 树)、** 信息增益(ID3)或信息增益比(C4.5)** 等指标,量化特征划分样本后类别的集中程度(如基尼指数越小、信息增益越大,说明划分后样本纯度越高),每次选择能最大程度降低不纯度的特征作为分裂点,递归地剔除对目标变量预测贡献较低的特征,最终保留的特征即为对模型最具判别力的关键特征。这一过程将特征选择与树的构建融为一体,实现了对特征重要性的原创 2025-06-08 22:58:53 · 56 阅读 · 0 评论 -
LSTM改进8:使用L2范数特征选择优化,提高训练效果
在机器学习中,L2 范数特征选择是一种基于正则化技术的特征筛选方法,主要通过约束模型参数的 L2 范数来间接衡量特征的重要性,并据此选择关键特征。原创 2025-06-06 22:27:49 · 135 阅读 · 0 评论 -
LSTM改进7:使用L1范数特征选择优化,提高训练效果
## L1范数特征选择"""Lasso特征选择器功能:1. 自动选择最佳正则化参数2. 根据指定特征数量进行特征筛选3. 保留特征名称跟踪参数:n_features : 需要选择的特征数量eps : 正则化路径长度(默认1e-3)n_alphas : 生成的alpha数量(默认100)cv : 交叉验证折数(默认5)random_state : 随机种子""""""执行特征选择参数:X : 特征矩阵 (n_samples, n_features)原创 2025-06-06 22:13:41 · 32 阅读 · 0 评论 -
LSTM改进6:使用StepLR优化学习率,提高训练效果
StepLR是PyTorch中一种等间隔学习率衰减策略,其核心原理是通过固定周期(step_size)逐步降低学习率以提升模型稳定性。该方法在训练过程中每隔step_size个epoch将当前学习率乘以预设的衰减因子gamma(默认0.1),形成阶梯式衰减曲线。例如初始学习率为0.1,设step_size=30、gamma=0.1时,第30个epoch后学习率降为0.01,第60个epoch后降为0.001。这种机制通过初期高学习率加速收敛与后期低学习率精细调整。原创 2025-05-03 23:07:40 · 124 阅读 · 0 评论 -
LSTM改进5:使用SophiaG训练模型,提高训练效果
SophiaG优化器是斯坦福大学提出的二阶优化器Sophia的变体,其核心创新在于采用Gauss-Newton-Bartlett(GNB)估计器替代Hutchinson估计器,通过轻量级随机估计对角Hessian矩阵作为预调节器,结合梯度裁剪机制动态控制更新幅度。该优化器在GPT-2等大语言模型上实现了比Adam快2倍的训练速度,且总计算量与挂钟时间均减少50%,同时保持与AdamW相同的内存开销。SophiaG通过异构曲率适应性(对尖锐维度施加更强惩罚)和非凸轨迹稳定性控制。原创 2025-05-03 23:07:28 · 72 阅读 · 0 评论 -
LSTM改进4:使用Lion训练模型,提高训练效果
Lion优化器(Layerwise-optimizer adaptive optimization method)是Google Brain团队提出的一种高效自适应优化算法,其核心设计灵感源于自然界中狮子的捕猎策略,通过动态调整各层参数的学习率来提升训练效率。与传统自适应优化器(如AdamW)不同,Lion仅需存储动量信息,将内存占用减少50%,尤其适合大规模模型训练(如ViT-B/16模型训练时显存需求从16芯片降至8芯片)。原创 2025-05-03 23:07:24 · 85 阅读 · 0 评论 -
LSTM改进3:使用AdamW训练模型,提高训练效果
AdamW(Adam with Weight Decay)是Adam优化器的改进版本,核心创新在于解耦权重衰减与梯度更新过程,解决了传统Adam中权重衰减与自适应学习率相互干扰的问题。通过将权重衰减独立应用于参数更新步骤(而非直接加入梯度),AdamW在保持自适应学习率优势的同时,显著提升了模型的泛化性能和训练稳定性。其动态正则化机制结合原始损失与分离的权重衰减项,既避免了梯度估计偏差,又能更高效地抑制过拟合。原创 2025-05-03 23:07:19 · 106 阅读 · 0 评论 -
LSTM改进2:使用SGD训练模型,提高训练效果
随机梯度下降(SGD)的核心优势在于其高效性与灵活性,尤其在大规模数据场景中表现突出。通过每次迭代随机选取部分样本计算梯度,SGD大幅降低了单次计算量,显著提升训练速度并减少内存占用,使其能够轻松处理无法一次性加载到内存的海量数据。同时,SGD的随机性引入噪声,帮助模型跳出局部最优解,探索更优的全局解。原创 2025-05-03 23:07:13 · 66 阅读 · 0 评论 -
LSTM改进1:使用Adam训练模型,提高训练效果
Adam优化器的核心优势在于其自适应学习率机制与动态梯度调控能力,能够显著提升模型训练的效率和稳定性。自适应性:梯度较大时自动减小步长防止震荡,梯度较小时增大步长加速收敛,尤其适合稀疏数据(如自然语言处理中的词向量训练);高效收敛:结合动量项的“历史惯性”效应,初期快速逼近最优解,后期精细调整参数,在图像分类(如ImageNet)和Transformer模型中表现出色;鲁棒性:通过偏差校正机制修正初始阶段的估计误差,并利用梯度平方根抑制异常梯度,有效避免梯度爆炸或消失问题;。原创 2025-05-03 23:07:07 · 112 阅读 · 0 评论