之前对sort的多维推广,一直不理解
但是好像多维的情况不多
np.random.seed(1)
sort_array=np.random.randint(20,size=[2,2,5])
print('原数组')
print(sort_array)
print('*'*60)
# 对应 axis 0 1 2
#这里是个三维的数组 也就意味 三维2 二维2 一维5
sort_array2=np.sort(sort_array,axis=2)
#axis=2是最后一个维度 也就每行自己比较 这时 第三维第二维都是相同是前提
print(sort_array2)
print('*'*60)
#这里是在同一个第三维第二维的情况下 纵向比较
sort_array1=np.sort(sort_array,axis=1)
print(sort_array1)
print('*'*60)
sort_array0=np.sort(sort_array,axis=0)
#三维 比较对象是同一维二维的数字
print(sort_array0)
#也就是该函式的根本原理类似偏导
#在其他维相同的情况下可推广到n维 但是一般只用到2维