关于自己之前没弄懂的np.sort的的多维推广

本文通过实例介绍了如何使用NumPy库对多维数组进行排序,包括不同轴方向上的排序方法,并探讨了其背后的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前对sort的多维推广,一直不理解

但是好像多维的情况不多

np.random.seed(1)
sort_array=np.random.randint(20,size=[2,2,5])
print('原数组')
print(sort_array)
print('*'*60)
#           对应    axis    0     1    2
#这里是个三维的数组 也就意味  三维2 二维2 一维5
sort_array2=np.sort(sort_array,axis=2)
#axis=2是最后一个维度 也就每行自己比较  这时 第三维第二维都是相同是前提
print(sort_array2)
print('*'*60)
#这里是在同一个第三维第二维的情况下 纵向比较
sort_array1=np.sort(sort_array,axis=1)
print(sort_array1)
print('*'*60)
sort_array0=np.sort(sort_array,axis=0)
#三维    比较对象是同一维二维的数字 
print(sort_array0)
#也就是该函式的根本原理类似偏导
#在其他维相同的情况下可推广到n维 但是一般只用到2维
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值